kevinwang676 commited on
Commit
6cadca7
·
verified ·
1 Parent(s): 2a0a2de

Create inference_webui.py

Browse files
Files changed (1) hide show
  1. GPT_SoVITS/inference_webui.py +776 -0
GPT_SoVITS/inference_webui.py ADDED
@@ -0,0 +1,776 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ 按中英混合识别
3
+ 按日英混合识别
4
+ 多语种启动切分识别语种
5
+ 全部按中文识别
6
+ 全部按英文识别
7
+ 全部按日文识别
8
+ '''
9
+ import logging
10
+ import traceback
11
+
12
+ logging.getLogger("markdown_it").setLevel(logging.ERROR)
13
+ logging.getLogger("urllib3").setLevel(logging.ERROR)
14
+ logging.getLogger("httpcore").setLevel(logging.ERROR)
15
+ logging.getLogger("httpx").setLevel(logging.ERROR)
16
+ logging.getLogger("asyncio").setLevel(logging.ERROR)
17
+ logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
18
+ logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
19
+ logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
20
+ import LangSegment, os, re, sys, json
21
+ import pdb
22
+ import torch
23
+
24
+ import spaces
25
+
26
+ version=os.environ.get("version","v2")
27
+ pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
28
+ pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
29
+
30
+ _ =[[],[]]
31
+ for i in range(2):
32
+ if os.path.exists(pretrained_gpt_name[i]):
33
+ _[0].append(pretrained_gpt_name[i])
34
+ if os.path.exists(pretrained_sovits_name[i]):
35
+ _[-1].append(pretrained_sovits_name[i])
36
+ pretrained_gpt_name,pretrained_sovits_name = _
37
+
38
+
39
+
40
+ if os.path.exists(f"./weight.json"):
41
+ pass
42
+ else:
43
+ with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file)
44
+
45
+ with open(f"./weight.json", 'r', encoding="utf-8") as file:
46
+ weight_data = file.read()
47
+ weight_data=json.loads(weight_data)
48
+ gpt_path = os.environ.get(
49
+ "gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name))
50
+ sovits_path = os.environ.get(
51
+ "sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name))
52
+ if isinstance(gpt_path,list):
53
+ gpt_path = gpt_path[0]
54
+ if isinstance(sovits_path,list):
55
+ sovits_path = sovits_path[0]
56
+
57
+ # gpt_path = os.environ.get(
58
+ # "gpt_path", pretrained_gpt_name
59
+ # )
60
+ # sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
61
+ cnhubert_base_path = os.environ.get(
62
+ "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
63
+ )
64
+ bert_path = os.environ.get(
65
+ "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
66
+ )
67
+ infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
68
+ infer_ttswebui = int(infer_ttswebui)
69
+ is_share = os.environ.get("is_share", "False")
70
+ is_share = eval(is_share)
71
+ if "_CUDA_VISIBLE_DEVICES" in os.environ:
72
+ os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
73
+ is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
74
+ punctuation = set(['!', '?', '…', ',', '.', '-'," "])
75
+ import gradio as gr
76
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
77
+ import numpy as np
78
+ import librosa
79
+ from feature_extractor import cnhubert
80
+
81
+ cnhubert.cnhubert_base_path = cnhubert_base_path
82
+
83
+ from module.models import SynthesizerTrn
84
+ from AR.models.t2s_lightning_module import Text2SemanticLightningModule
85
+ from text import cleaned_text_to_sequence
86
+ from text.cleaner import clean_text
87
+ from time import time as ttime
88
+ from module.mel_processing import spectrogram_torch
89
+ from tools.my_utils import load_audio
90
+ from tools.i18n.i18n import I18nAuto, scan_language_list
91
+
92
+ language=os.environ.get("language","Auto")
93
+ language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
94
+ i18n = I18nAuto(language=language)
95
+
96
+ # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
97
+
98
+ if torch.cuda.is_available():
99
+ device = "cuda"
100
+ else:
101
+ device = "cpu"
102
+
103
+ dict_language_v1 = {
104
+ i18n("中文"): "all_zh",#全部按中文识别
105
+ i18n("英文"): "en",#全部按英文识别#######不变
106
+ i18n("日文"): "all_ja",#全部按日文识别
107
+ i18n("中英混合"): "zh",#按中英混合识别####不变
108
+ i18n("日英混合"): "ja",#按日英混合识别####不变
109
+ i18n("多语种混合"): "auto",#多语种启动切分识别语种
110
+ }
111
+ dict_language_v2 = {
112
+ i18n("中文"): "all_zh",#全部按中文识别
113
+ i18n("英文"): "en",#全部按英文识别#######不变
114
+ i18n("日文"): "all_ja",#全部按日文识别
115
+ i18n("粤语"): "all_yue",#全部按中文识别
116
+ i18n("韩文"): "all_ko",#全部按韩文识别
117
+ i18n("中英混合"): "zh",#按中英混合识别####不变
118
+ i18n("日英混合"): "ja",#按日英混合识别####不变
119
+ i18n("粤英混合"): "yue",#按粤英混合识别####不变
120
+ i18n("韩英混合"): "ko",#按韩英混合识别####不变
121
+ i18n("多语种混合"): "auto",#多语种启动切分识别语种
122
+ i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
123
+ }
124
+ dict_language = dict_language_v1 if version =='v1' else dict_language_v2
125
+
126
+ tokenizer = AutoTokenizer.from_pretrained(bert_path)
127
+ bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
128
+ if is_half == True:
129
+ bert_model = bert_model.half().to(device)
130
+ else:
131
+ bert_model = bert_model.to(device)
132
+
133
+
134
+ def get_bert_feature(text, word2ph):
135
+ with torch.no_grad():
136
+ inputs = tokenizer(text, return_tensors="pt")
137
+ for i in inputs:
138
+ inputs[i] = inputs[i].to(device)
139
+ res = bert_model(**inputs, output_hidden_states=True)
140
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
141
+ assert len(word2ph) == len(text)
142
+ phone_level_feature = []
143
+ for i in range(len(word2ph)):
144
+ repeat_feature = res[i].repeat(word2ph[i], 1)
145
+ phone_level_feature.append(repeat_feature)
146
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
147
+ return phone_level_feature.T
148
+
149
+
150
+ class DictToAttrRecursive(dict):
151
+ def __init__(self, input_dict):
152
+ super().__init__(input_dict)
153
+ for key, value in input_dict.items():
154
+ if isinstance(value, dict):
155
+ value = DictToAttrRecursive(value)
156
+ self[key] = value
157
+ setattr(self, key, value)
158
+
159
+ def __getattr__(self, item):
160
+ try:
161
+ return self[item]
162
+ except KeyError:
163
+ raise AttributeError(f"Attribute {item} not found")
164
+
165
+ def __setattr__(self, key, value):
166
+ if isinstance(value, dict):
167
+ value = DictToAttrRecursive(value)
168
+ super(DictToAttrRecursive, self).__setitem__(key, value)
169
+ super().__setattr__(key, value)
170
+
171
+ def __delattr__(self, item):
172
+ try:
173
+ del self[item]
174
+ except KeyError:
175
+ raise AttributeError(f"Attribute {item} not found")
176
+
177
+
178
+ ssl_model = cnhubert.get_model()
179
+ if is_half == True:
180
+ ssl_model = ssl_model.half().to(device)
181
+ else:
182
+ ssl_model = ssl_model.to(device)
183
+
184
+
185
+ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
186
+ global vq_model, hps, version, dict_language
187
+ dict_s2 = torch.load(sovits_path, map_location="cpu")
188
+ hps = dict_s2["config"]
189
+ hps = DictToAttrRecursive(hps)
190
+ hps.model.semantic_frame_rate = "25hz"
191
+ if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
192
+ hps.model.version = "v1"
193
+ else:
194
+ hps.model.version = "v2"
195
+ version = hps.model.version
196
+ # print("sovits版本:",hps.model.version)
197
+ vq_model = SynthesizerTrn(
198
+ hps.data.filter_length // 2 + 1,
199
+ hps.train.segment_size // hps.data.hop_length,
200
+ n_speakers=hps.data.n_speakers,
201
+ **hps.model
202
+ )
203
+ if ("pretrained" not in sovits_path):
204
+ del vq_model.enc_q
205
+ if is_half == True:
206
+ vq_model = vq_model.half().to(device)
207
+ else:
208
+ vq_model = vq_model.to(device)
209
+ vq_model.eval()
210
+ print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
211
+ dict_language = dict_language_v1 if version =='v1' else dict_language_v2
212
+ with open("./weight.json")as f:
213
+ data=f.read()
214
+ data=json.loads(data)
215
+ data["SoVITS"][version]=sovits_path
216
+ with open("./weight.json","w")as f:f.write(json.dumps(data))
217
+ if prompt_language is not None and text_language is not None:
218
+ if prompt_language in list(dict_language.keys()):
219
+ prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language}
220
+ else:
221
+ prompt_text_update = {'__type__':'update', 'value':''}
222
+ prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
223
+ if text_language in list(dict_language.keys()):
224
+ text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
225
+ else:
226
+ text_update = {'__type__':'update', 'value':''}
227
+ text_language_update = {'__type__':'update', 'value':i18n("中文")}
228
+ return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update
229
+
230
+
231
+
232
+ change_sovits_weights(sovits_path)
233
+
234
+
235
+ def change_gpt_weights(gpt_path):
236
+ global hz, max_sec, t2s_model, config
237
+ hz = 50
238
+ dict_s1 = torch.load(gpt_path, map_location="cpu")
239
+ config = dict_s1["config"]
240
+ max_sec = config["data"]["max_sec"]
241
+ t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
242
+ t2s_model.load_state_dict(dict_s1["weight"])
243
+ if is_half == True:
244
+ t2s_model = t2s_model.half()
245
+ t2s_model = t2s_model.to(device)
246
+ t2s_model.eval()
247
+ total = sum([param.nelement() for param in t2s_model.parameters()])
248
+ print("Number of parameter: %.2fM" % (total / 1e6))
249
+ with open("./weight.json")as f:
250
+ data=f.read()
251
+ data=json.loads(data)
252
+ data["GPT"][version]=gpt_path
253
+ with open("./weight.json","w")as f:f.write(json.dumps(data))
254
+
255
+
256
+ change_gpt_weights(gpt_path)
257
+
258
+
259
+ def get_spepc(hps, filename):
260
+ audio = load_audio(filename, int(hps.data.sampling_rate))
261
+ audio = torch.FloatTensor(audio)
262
+ maxx=audio.abs().max()
263
+ if(maxx>1):audio/=min(2,maxx)
264
+ audio_norm = audio
265
+ audio_norm = audio_norm.unsqueeze(0)
266
+ spec = spectrogram_torch(
267
+ audio_norm,
268
+ hps.data.filter_length,
269
+ hps.data.sampling_rate,
270
+ hps.data.hop_length,
271
+ hps.data.win_length,
272
+ center=False,
273
+ )
274
+ return spec
275
+
276
+ def clean_text_inf(text, language, version):
277
+ phones, word2ph, norm_text = clean_text(text, language, version)
278
+ phones = cleaned_text_to_sequence(phones, version)
279
+ return phones, word2ph, norm_text
280
+
281
+ dtype=torch.float16 if is_half == True else torch.float32
282
+ def get_bert_inf(phones, word2ph, norm_text, language):
283
+ language=language.replace("all_","")
284
+ if language == "zh":
285
+ bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
286
+ else:
287
+ bert = torch.zeros(
288
+ (1024, len(phones)),
289
+ dtype=torch.float16 if is_half == True else torch.float32,
290
+ ).to(device)
291
+
292
+ return bert
293
+
294
+
295
+ splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
296
+
297
+
298
+ def get_first(text):
299
+ pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
300
+ text = re.split(pattern, text)[0].strip()
301
+ return text
302
+
303
+ from text import chinese
304
+ def get_phones_and_bert(text,language,version):
305
+ if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
306
+ language = language.replace("all_","")
307
+ if language == "en":
308
+ LangSegment.setfilters(["en"])
309
+ formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
310
+ else:
311
+ # 因无法区别中日韩文汉字,以用户输入为准
312
+ formattext = text
313
+ while " " in formattext:
314
+ formattext = formattext.replace(" ", " ")
315
+ if language == "zh":
316
+ if re.search(r'[A-Za-z]', formattext):
317
+ formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
318
+ formattext = chinese.mix_text_normalize(formattext)
319
+ return get_phones_and_bert(formattext,"zh",version)
320
+ else:
321
+ phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
322
+ bert = get_bert_feature(norm_text, word2ph).to(device)
323
+ elif language == "yue" and re.search(r'[A-Za-z]', formattext):
324
+ formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
325
+ formattext = chinese.mix_text_normalize(formattext)
326
+ return get_phones_and_bert(formattext,"yue",version)
327
+ else:
328
+ phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
329
+ bert = torch.zeros(
330
+ (1024, len(phones)),
331
+ dtype=torch.float16 if is_half == True else torch.float32,
332
+ ).to(device)
333
+ elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
334
+ textlist=[]
335
+ langlist=[]
336
+ LangSegment.setfilters(["zh","ja","en","ko"])
337
+ if language == "auto":
338
+ for tmp in LangSegment.getTexts(text):
339
+ langlist.append(tmp["lang"])
340
+ textlist.append(tmp["text"])
341
+ elif language == "auto_yue":
342
+ for tmp in LangSegment.getTexts(text):
343
+ if tmp["lang"] == "zh":
344
+ tmp["lang"] = "yue"
345
+ langlist.append(tmp["lang"])
346
+ textlist.append(tmp["text"])
347
+ else:
348
+ for tmp in LangSegment.getTexts(text):
349
+ if tmp["lang"] == "en":
350
+ langlist.append(tmp["lang"])
351
+ else:
352
+ # 因无法区别中日韩文汉字,以用户输入为准
353
+ langlist.append(language)
354
+ textlist.append(tmp["text"])
355
+ print(textlist)
356
+ print(langlist)
357
+ phones_list = []
358
+ bert_list = []
359
+ norm_text_list = []
360
+ for i in range(len(textlist)):
361
+ lang = langlist[i]
362
+ phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
363
+ bert = get_bert_inf(phones, word2ph, norm_text, lang)
364
+ phones_list.append(phones)
365
+ norm_text_list.append(norm_text)
366
+ bert_list.append(bert)
367
+ bert = torch.cat(bert_list, dim=1)
368
+ phones = sum(phones_list, [])
369
+ norm_text = ''.join(norm_text_list)
370
+
371
+ return phones,bert.to(dtype),norm_text
372
+
373
+
374
+ def merge_short_text_in_array(texts, threshold):
375
+ if (len(texts)) < 2:
376
+ return texts
377
+ result = []
378
+ text = ""
379
+ for ele in texts:
380
+ text += ele
381
+ if len(text) >= threshold:
382
+ result.append(text)
383
+ text = ""
384
+ if (len(text) > 0):
385
+ if len(result) == 0:
386
+ result.append(text)
387
+ else:
388
+ result[len(result) - 1] += text
389
+ return result
390
+
391
+ ##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
392
+ # cache_tokens={}#暂未实现清理机制
393
+ cache= {}
394
+
395
+ @spaces.GPU()
396
+ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=123):
397
+ global cache
398
+ if ref_wav_path:pass
399
+ else:gr.Warning(i18n('请上传参考音频'))
400
+ if text:pass
401
+ else:gr.Warning(i18n('请填入推理文本'))
402
+ t = []
403
+ if prompt_text is None or len(prompt_text) == 0:
404
+ ref_free = True
405
+ t0 = ttime()
406
+ prompt_language = dict_language[prompt_language]
407
+ text_language = dict_language[text_language]
408
+
409
+
410
+ if not ref_free:
411
+ prompt_text = prompt_text.strip("\n")
412
+ if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
413
+ print(i18n("实际输入的参考文本:"), prompt_text)
414
+ text = text.strip("\n")
415
+ if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
416
+
417
+ print(i18n("实际输入的目标文本:"), text)
418
+ zero_wav = np.zeros(
419
+ int(hps.data.sampling_rate * 0.3),
420
+ dtype=np.float16 if is_half == True else np.float32,
421
+ )
422
+ if not ref_free:
423
+ with torch.no_grad():
424
+ wav16k, sr = librosa.load(ref_wav_path, sr=16000)
425
+ if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
426
+ gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
427
+ raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
428
+ wav16k = torch.from_numpy(wav16k)
429
+ zero_wav_torch = torch.from_numpy(zero_wav)
430
+ if is_half == True:
431
+ wav16k = wav16k.half().to(device)
432
+ zero_wav_torch = zero_wav_torch.half().to(device)
433
+ else:
434
+ wav16k = wav16k.to(device)
435
+ zero_wav_torch = zero_wav_torch.to(device)
436
+ wav16k = torch.cat([wav16k, zero_wav_torch])
437
+ ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
438
+ "last_hidden_state"
439
+ ].transpose(
440
+ 1, 2
441
+ ) # .float()
442
+ codes = vq_model.extract_latent(ssl_content)
443
+ prompt_semantic = codes[0, 0]
444
+ prompt = prompt_semantic.unsqueeze(0).to(device)
445
+
446
+ t1 = ttime()
447
+ t.append(t1-t0)
448
+
449
+ if (how_to_cut == i18n("凑四句一切")):
450
+ text = cut1(text)
451
+ elif (how_to_cut == i18n("凑50字一切")):
452
+ text = cut2(text)
453
+ elif (how_to_cut == i18n("按中文句号。切")):
454
+ text = cut3(text)
455
+ elif (how_to_cut == i18n("按英文句号.切")):
456
+ text = cut4(text)
457
+ elif (how_to_cut == i18n("按标点符号切")):
458
+ text = cut5(text)
459
+ while "\n\n" in text:
460
+ text = text.replace("\n\n", "\n")
461
+ print(i18n("实际输入的目标文本(切句后):"), text)
462
+ texts = text.split("\n")
463
+ texts = process_text(texts)
464
+ texts = merge_short_text_in_array(texts, 5)
465
+ audio_opt = []
466
+ if not ref_free:
467
+ phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
468
+
469
+ for i_text,text in enumerate(texts):
470
+ # 解决输入目标文本的空行导致报错的问题
471
+ if (len(text.strip()) == 0):
472
+ continue
473
+ if (text[-1] not in splits): text += "。" if text_language != "en" else "."
474
+ print(i18n("实际输入的目标文本(每句):"), text)
475
+ phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
476
+ print(i18n("前端处理后的文本(每句):"), norm_text2)
477
+ if not ref_free:
478
+ bert = torch.cat([bert1, bert2], 1)
479
+ all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
480
+ else:
481
+ bert = bert2
482
+ all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
483
+
484
+ bert = bert.to(device).unsqueeze(0)
485
+ all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
486
+
487
+ t2 = ttime()
488
+ # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
489
+ # print(cache.keys(),if_freeze)
490
+ if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
491
+ else:
492
+ with torch.no_grad():
493
+ pred_semantic, idx = t2s_model.model.infer_panel(
494
+ all_phoneme_ids,
495
+ all_phoneme_len,
496
+ None if ref_free else prompt,
497
+ bert,
498
+ # prompt_phone_len=ph_offset,
499
+ top_k=top_k,
500
+ top_p=top_p,
501
+ temperature=temperature,
502
+ early_stop_num=hz * max_sec,
503
+ )
504
+ pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
505
+ cache[i_text]=pred_semantic
506
+ t3 = ttime()
507
+ refers=[]
508
+ if(inp_refs):
509
+ for path in inp_refs:
510
+ try:
511
+ refer = get_spepc(hps, path.name).to(dtype).to(device)
512
+ refers.append(refer)
513
+ except:
514
+ traceback.print_exc()
515
+ if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
516
+ audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
517
+ max_audio=np.abs(audio).max()#简单防止16bit爆音
518
+ if max_audio>1:audio/=max_audio
519
+ audio_opt.append(audio)
520
+ audio_opt.append(zero_wav)
521
+ t4 = ttime()
522
+ t.extend([t2 - t1,t3 - t2, t4 - t3])
523
+ t1 = ttime()
524
+ print("%.3f\t%.3f\t%.3f\t%.3f" %
525
+ (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
526
+ )
527
+ yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
528
+ np.int16
529
+ )
530
+
531
+
532
+ def split(todo_text):
533
+ todo_text = todo_text.replace("……", "。").replace("——", ",")
534
+ if todo_text[-1] not in splits:
535
+ todo_text += "。"
536
+ i_split_head = i_split_tail = 0
537
+ len_text = len(todo_text)
538
+ todo_texts = []
539
+ while 1:
540
+ if i_split_head >= len_text:
541
+ break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
542
+ if todo_text[i_split_head] in splits:
543
+ i_split_head += 1
544
+ todo_texts.append(todo_text[i_split_tail:i_split_head])
545
+ i_split_tail = i_split_head
546
+ else:
547
+ i_split_head += 1
548
+ return todo_texts
549
+
550
+
551
+ def cut1(inp):
552
+ inp = inp.strip("\n")
553
+ inps = split(inp)
554
+ split_idx = list(range(0, len(inps), 4))
555
+ split_idx[-1] = None
556
+ if len(split_idx) > 1:
557
+ opts = []
558
+ for idx in range(len(split_idx) - 1):
559
+ opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
560
+ else:
561
+ opts = [inp]
562
+ opts = [item for item in opts if not set(item).issubset(punctuation)]
563
+ return "\n".join(opts)
564
+
565
+
566
+ def cut2(inp):
567
+ inp = inp.strip("\n")
568
+ inps = split(inp)
569
+ if len(inps) < 2:
570
+ return inp
571
+ opts = []
572
+ summ = 0
573
+ tmp_str = ""
574
+ for i in range(len(inps)):
575
+ summ += len(inps[i])
576
+ tmp_str += inps[i]
577
+ if summ > 50:
578
+ summ = 0
579
+ opts.append(tmp_str)
580
+ tmp_str = ""
581
+ if tmp_str != "":
582
+ opts.append(tmp_str)
583
+ # print(opts)
584
+ if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
585
+ opts[-2] = opts[-2] + opts[-1]
586
+ opts = opts[:-1]
587
+ opts = [item for item in opts if not set(item).issubset(punctuation)]
588
+ return "\n".join(opts)
589
+
590
+
591
+ def cut3(inp):
592
+ inp = inp.strip("\n")
593
+ opts = ["%s" % item for item in inp.strip("。").split("。")]
594
+ opts = [item for item in opts if not set(item).issubset(punctuation)]
595
+ return "\n".join(opts)
596
+
597
+ def cut4(inp):
598
+ inp = inp.strip("\n")
599
+ opts = ["%s" % item for item in inp.strip(".").split(".")]
600
+ opts = [item for item in opts if not set(item).issubset(punctuation)]
601
+ return "\n".join(opts)
602
+
603
+
604
+ # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
605
+ def cut5(inp):
606
+ inp = inp.strip("\n")
607
+ punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
608
+ mergeitems = []
609
+ items = []
610
+
611
+ for i, char in enumerate(inp):
612
+ if char in punds:
613
+ if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
614
+ items.append(char)
615
+ else:
616
+ items.append(char)
617
+ mergeitems.append("".join(items))
618
+ items = []
619
+ else:
620
+ items.append(char)
621
+
622
+ if items:
623
+ mergeitems.append("".join(items))
624
+
625
+ opt = [item for item in mergeitems if not set(item).issubset(punds)]
626
+ return "\n".join(opt)
627
+
628
+
629
+ def custom_sort_key(s):
630
+ # 使用正则表达式提取字符串中的数字部分和非数字部分
631
+ parts = re.split('(\d+)', s)
632
+ # 将数字部分转换为整数,非数字部分保持不变
633
+ parts = [int(part) if part.isdigit() else part for part in parts]
634
+ return parts
635
+
636
+ def process_text(texts):
637
+ _text=[]
638
+ if all(text in [None, " ", "\n",""] for text in texts):
639
+ raise ValueError(i18n("请输入有效文本"))
640
+ for text in texts:
641
+ if text in [None, " ", ""]:
642
+ pass
643
+ else:
644
+ _text.append(text)
645
+ return _text
646
+
647
+
648
+ def change_choices():
649
+ SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
650
+ return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
651
+
652
+
653
+ SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"]
654
+ GPT_weight_root=["GPT_weights_v2","GPT_weights"]
655
+ for path in SoVITS_weight_root+GPT_weight_root:
656
+ os.makedirs(path,exist_ok=True)
657
+
658
+
659
+ def get_weights_names(GPT_weight_root, SoVITS_weight_root):
660
+ SoVITS_names = [i for i in pretrained_sovits_name]
661
+ for path in SoVITS_weight_root:
662
+ for name in os.listdir(path):
663
+ if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
664
+ GPT_names = [i for i in pretrained_gpt_name]
665
+ for path in GPT_weight_root:
666
+ for name in os.listdir(path):
667
+ if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
668
+ return SoVITS_names, GPT_names
669
+
670
+
671
+ SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
672
+
673
+ def html_center(text, label='p'):
674
+ return f"""<div style="text-align: center; margin: 100; padding: 50;">
675
+ <{label} style="margin: 0; padding: 0;">{text}</{label}>
676
+ </div>"""
677
+
678
+ def html_left(text, label='p'):
679
+ return f"""<div style="text-align: left; margin: 0; padding: 0;">
680
+ <{label} style="margin: 0; padding: 0;">{text}</{label}>
681
+ </div>"""
682
+
683
+
684
+ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
685
+ gr.Markdown("# <center>🌊💕🎶 第二代[GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS) 更大更强、完美复刻</center>")
686
+ gr.Markdown("## <center>🌟 只需1分钟音频,超拟人真实声音复刻,支持中日英韩粤语,最强开源模型!</center>")
687
+ gr.Markdown("### <center>🤗 更多精彩,尽在[滔滔AI](https://www.talktalkai.com/);滔滔AI,为爱滔滔!💕</center>")
688
+
689
+ with gr.Group():
690
+ gr.Markdown(html_center(i18n("模型切换"),'h3'))
691
+ with gr.Row():
692
+ GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True, scale=14)
693
+ SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True, scale=14)
694
+ refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
695
+ refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
696
+ gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3'))
697
+ with gr.Row():
698
+ inp_ref = gr.Audio(label=i18n("请上传3~10秒的参考音频,超过会报错!"), type="filepath", scale=13)
699
+ with gr.Column(scale=13):
700
+ ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
701
+ gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。")))
702
+ prompt_text = gr.Textbox(label=i18n("参考音频对应的文本内容"), value="", lines=3, max_lines=3)
703
+ prompt_language = gr.Dropdown(
704
+ label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"), scale=14
705
+ )
706
+ inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple",scale=13)
707
+ #gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
708
+ with gr.Row():
709
+ with gr.Column(scale=13):
710
+ text = gr.Textbox(label=i18n("请填写您想要合成的文本"), placeholder="想说却还没说的,还很多...", lines=6)
711
+ with gr.Column(scale=7):
712
+ text_language = gr.Dropdown(
713
+ label=i18n("需要合成的语种")+i18n("限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文"), scale=1
714
+ )
715
+ how_to_cut = gr.Dropdown(
716
+ label=i18n("怎么切"),
717
+ choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
718
+ value=i18n("凑四句一切"),
719
+ interactive=True, scale=1
720
+ )
721
+ #gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
722
+ if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True, scale=1, visible=False)
723
+ speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True, scale=1, visible=False)
724
+ #gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
725
+ top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True, scale=1, visible=False)
726
+ top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True, scale=1, visible=False)
727
+ temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True, scale=1, visible=False)
728
+ # with gr.Column():
729
+ # gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
730
+ # phoneme=gr.Textbox(label=i18n("音素框"), value="")
731
+ # get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
732
+ with gr.Row():
733
+ inference_button = gr.Button(i18n("开启声音复刻之旅吧💕"), variant="primary", size='lg', scale=25)
734
+ output = gr.Audio(label=i18n("为您合成的专属音频🎶"), scale=14)
735
+
736
+ inference_button.click(
737
+ get_tts_wav,
738
+ [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs],
739
+ [output],
740
+ )
741
+ SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language])
742
+ GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
743
+ gr.Markdown(
744
+ """
745
+ ##
746
+ ### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>
747
+ """
748
+ )
749
+ #gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>")
750
+ gr.HTML('''
751
+ <div class="footer">
752
+ <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
753
+ </p>
754
+ </div>
755
+ ''')
756
+ # gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
757
+ # with gr.Row():
758
+ # text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
759
+ # button1 = gr.Button(i18n("凑四句一切"), variant="primary")
760
+ # button2 = gr.Button(i18n("凑50字一切"), variant="primary")
761
+ # button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
762
+ # button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
763
+ # button5 = gr.Button(i18n("按标点符号切"), variant="primary")
764
+ # text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
765
+ # button1.click(cut1, [text_inp], [text_opt])
766
+ # button2.click(cut2, [text_inp], [text_opt])
767
+ # button3.click(cut3, [text_inp], [text_opt])
768
+ # button4.click(cut4, [text_inp], [text_opt])
769
+ # button5.click(cut5, [text_inp], [text_opt])
770
+ # gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
771
+
772
+ if __name__ == '__main__':
773
+ app.queue().launch(
774
+ share=False,
775
+ show_error=True,
776
+ )