Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,26 @@ target_languages = flores_codes # 简化列表
|
|
10 |
|
11 |
# 假设openai_client已定义,例如:
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
@lru_cache(maxsize=100)
|
15 |
def translate(text: str, src_lang: str, tgt_lang: str):
|
@@ -19,6 +39,53 @@ def translate(text: str, src_lang: str, tgt_lang: str):
|
|
19 |
raise gr.Error("The target language is empty! Please choose it in the dropdown list.")
|
20 |
return _translate(text, src_lang, tgt_lang)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def _translate(text: str, src_lang: str, tgt_lang: str):
|
23 |
prompt = f"Translate the following text from {src_lang} to {tgt_lang}. Direct output translation result without any explaination:\n\n{text}"
|
24 |
key=os.getenv('key')
|
|
|
10 |
|
11 |
# 假设openai_client已定义,例如:
|
12 |
|
13 |
+
device = "cpu" if platform.system() == "Darwin" else "cuda"
|
14 |
+
MODEL_NAME = "ByteDance-Seed/Seed-X-PPO-7B"
|
15 |
+
|
16 |
+
code_mapping = dict(sorted(code_mapping.items(), key=lambda item: item[0]))
|
17 |
+
flores_codes = list(code_mapping.keys())
|
18 |
+
target_languages = [language for language in flores_codes if not language in REMOVED_TARGET_LANGUAGES]
|
19 |
+
|
20 |
+
def load_model():
|
21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to(device)
|
22 |
+
print(f"Model loaded in {device}")
|
23 |
+
return model
|
24 |
+
|
25 |
+
|
26 |
+
model = load_model()
|
27 |
+
|
28 |
+
|
29 |
+
# Loading the tokenizer once, because re-loading it takes about 1.5 seconds each time
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
31 |
+
|
32 |
+
|
33 |
|
34 |
@lru_cache(maxsize=100)
|
35 |
def translate(text: str, src_lang: str, tgt_lang: str):
|
|
|
39 |
raise gr.Error("The target language is empty! Please choose it in the dropdown list.")
|
40 |
return _translate(text, src_lang, tgt_lang)
|
41 |
|
42 |
+
# Only assign GPU if cache not used
|
43 |
+
@spaces.GPU
|
44 |
+
def _translate(text: str, src_lang: str, tgt_lang: str):
|
45 |
+
src_code = code_mapping[src_lang]
|
46 |
+
tgt_code = code_mapping[tgt_lang]
|
47 |
+
tokenizer.src_lang = src_code
|
48 |
+
tokenizer.tgt_lang = tgt_code
|
49 |
+
|
50 |
+
# normalizing the punctuation first
|
51 |
+
text = punct_normalizer.normalize(text)
|
52 |
+
|
53 |
+
paragraphs = text.split("\n")
|
54 |
+
translated_paragraphs = []
|
55 |
+
|
56 |
+
for paragraph in paragraphs:
|
57 |
+
splitter = get_language_specific_sentence_splitter(src_code)
|
58 |
+
sentences = list(splitter(paragraph))
|
59 |
+
translated_sentences = []
|
60 |
+
|
61 |
+
for sentence in sentences:
|
62 |
+
input_tokens = (
|
63 |
+
tokenizer(sentence, return_tensors="pt")
|
64 |
+
.input_ids[0]
|
65 |
+
.cpu()
|
66 |
+
.numpy()
|
67 |
+
.tolist()
|
68 |
+
)
|
69 |
+
translated_chunk = model.generate(
|
70 |
+
input_ids=torch.tensor([input_tokens]).to(device),
|
71 |
+
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_code),
|
72 |
+
max_length=len(input_tokens) + 50,
|
73 |
+
num_return_sequences=1,
|
74 |
+
num_beams=5,
|
75 |
+
no_repeat_ngram_size=4, # repetition blocking works better if this number is below num_beams
|
76 |
+
renormalize_logits=True, # recompute token probabilities after banning the repetitions
|
77 |
+
)
|
78 |
+
translated_chunk = tokenizer.decode(
|
79 |
+
translated_chunk[0], skip_special_tokens=True
|
80 |
+
)
|
81 |
+
translated_sentences.append(translated_chunk)
|
82 |
+
|
83 |
+
translated_paragraph = " ".join(translated_sentences)
|
84 |
+
translated_paragraphs.append(translated_paragraph)
|
85 |
+
|
86 |
+
return "\n".join(translated_paragraphs)
|
87 |
+
|
88 |
+
|
89 |
def _translate(text: str, src_lang: str, tgt_lang: str):
|
90 |
prompt = f"Translate the following text from {src_lang} to {tgt_lang}. Direct output translation result without any explaination:\n\n{text}"
|
91 |
key=os.getenv('key')
|