R-PRM-Demo / app.py
kevinpro's picture
Update app.py
dd32415 verified
raw
history blame
4.75 kB
import gradio as gr
from flores import code_mapping
from functools import lru_cache
import openai # 用于调用外部API
import os
import spaces
import gradio as gr
from sacremoses import MosesPunctNormalizer
from stopes.pipelines.monolingual.utils.sentence_split import get_split_algo
from transformers import AutoTokenizer, AutoModel,AutoModelForCausalLM
from flores import code_mapping
import platform
import torch
import nltk
from functools import lru_cache
code_mapping = dict(sorted(code_mapping.items(), key=lambda item: item[0]))
flores_codes = list(code_mapping.keys())
target_languages = flores_codes # 简化列表
# 假设openai_client已定义,例如:
device = "cuda"
MODEL_NAME = "ByteDance-Seed/Seed-X-PPO-7B"
def load_model():
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,torch_dtype="bfloat16").to(device)
print(f"Model loaded in {device}")
return model
model = load_model()
# Loading the tokenizer once, because re-loading it takes about 1.5 seconds each time
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
@lru_cache(maxsize=100)
def translate(text: str, src_lang: str, tgt_lang: str):
if not src_lang:
raise gr.Error("The source language is empty! Please choose it in the dropdown list.")
if not tgt_lang:
raise gr.Error("The target language is empty! Please choose it in the dropdown list.")
return _translate(text, src_lang, tgt_lang)
# Only assign GPU if cache not used
@spaces.GPU
def _translate(text: str, src_lang: str, tgt_lang: str):
paragraphs = text.split("\n")
translated_paragraphs = []
for paragraph in paragraphs:
translated_sentences = []
input_tokens = (
tokenizer("Translate to Chinese. Direct output translation result without any explaination::\n\n" + paragraph, return_tensors="pt")
.input_ids[0]
.cpu()
.numpy()
.tolist()
)
translated_chunk = model.generate(
input_ids=torch.tensor([input_tokens]).to(device),
max_length=len(input_tokens) + 1000,
num_return_sequences=1,
)
print(translated_chunk)
translated_chunk = tokenizer.batch_decode(
translated_chunk[0], skip_special_tokens=True
)
translated_sentences.append(translated_chunk)
translated_paragraph = " ".join(translated_sentences)
translated_paragraphs.append(translated_paragraph)
return "\n".join(translated_paragraphs)
# def _translate(text: str, src_lang: str, tgt_lang: str):
# prompt = f"Translate the following text from {src_lang} to {tgt_lang}. Direct output translation result without any explaination:\n\n{text}"
# key=os.getenv('key')
# openai_client = openai.OpenAI(base_url="https://ssapi.cppbear.site/v1", api_key=key)
# response = openai_client.chat.completions.create(
# model="tbai.xin-dpsk-deepseek-v3", # 如gpt-3.5-turbo或其他兼容模型
# messages=[{"role": "user", "content": prompt}],
# max_tokens=30240,
# temperature=0.0
# )
# print(response)
# return response.choices[0].message.content.strip()
description = """
<div style="text-align: center;">
<img src="https://github.com/user-attachments/assets/c42e675e-497c-4508-8bb9-093ad4d1f216" alt="UNESCO Meta Hugging Face Banner" style="max-width: 800px; width: 100%; margin: 0 auto;">
<h1 style="color: #0077be; font-size: 3em;">Seed-X, powered by Bytedance</h1>
</div>
We are excited to introduce Seed-X, a powerful series of open-source multilingual translation language models, including an instruction model, a reinforcement learning model, and a reward model. It pushes the boundaries of translation capabilities within 7 billion parameters. We develop Seed-X as an accessible, off-the-shelf tool to support the community in advancing translation research and applications:
"""
examples_inputs = [["Seed-X is indeed a good translation model ","English","Chinese"],]
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Row():
src_lang = gr.Dropdown(label="Source Language", choices=flores_codes)
target_lang = gr.Dropdown(label="Target Language", choices=target_languages)
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=6)
with gr.Row():
btn = gr.Button("Translate text")
with gr.Row():
output = gr.Textbox(label="Output Text", lines=6)
btn.click(
translate,
inputs=[input_text, src_lang, target_lang],
outputs=output,
)
examples = gr.Examples(examples=examples_inputs,inputs=[input_text, src_lang,target_lang], fn=translate, outputs=output, cache_examples=True)
demo.launch()