File size: 7,496 Bytes
556657e 562362e 556657e 4bdbb91 556657e 4bdbb91 556657e 4bdbb91 556657e 562362e 556657e abfb23c 556657e 562362e 4bdbb91 562362e 4bdbb91 562362e abfb23c 562362e 556657e 562362e 556657e 4bdbb91 556657e 562362e 556657e 4bdbb91 556657e 4bdbb91 556657e 562362e 556657e 562362e 4bdbb91 556657e 562362e 556657e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import json
import glob
from collections import defaultdict
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob
import pandas as pd
# 假设 original_df 是一个 pandas DataFrame,并且 COLS 和 TYPES 是已经定义好的列名和数据类型列表。
# 定义一个函数,用于格式化浮点数为保留一位小数的字符串
def format_floats(val):
if val:
if isinstance(val, float):
return f"{val:.1f}"
return val
ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',')
LANG_NAME = {
'ar': 'Arabic',
'bn': 'Bengali',
'ca': 'Catalan',
'da': 'Danish',
'de': 'German',
'es': 'Spanish',
'eu': 'Basque',
'fr': 'French',
'gu': 'Gujarati',
'hi': 'Hindi',
'hr': 'Croatian',
'hu': 'Hungarian',
'hy': 'Armenian',
'id': 'Indonesian',
'it': 'Italian',
'kn': 'Kannada',
'ml': 'Malayalam',
'mr': 'Marathi',
'ne': 'Nepali',
'nl': 'Dutch',
'pt': 'Portuguese',
'ro': 'Romanian',
'ru': 'Russian',
'sk': 'Slovak',
'sr': 'Serbian',
'sv': 'Swedish',
'ta': 'Tamil',
'te': 'Telugu',
'uk': 'Ukrainian',
'vi': 'Vietnamese',
'zh': 'Chinese'
}
MODEL_COL = "Model"
LANG_COL = "Language"
CODE_COL = "Code"
AVERAGE_COL = "Average"
ARC_COL = "ARC (25-shot)"
MGSM_COL = "MGSM"
MSVAMP_COL = "MSVAMP"
MNUM_COL = "MNumGLUESub"
HELLASWAG_COL = "HellaSwag (0-shot)️"
MMLU_COL = "MMLU (25-shot)"
TRUTHFULQA_COL = "TruthfulQA (0-shot)"
NOTES_COL = "Notes" # For search only
# COLS = [MODEL_COL, LANG_COL, CODE_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL]
# TYPES = ["str", "str", "str", "number", "number", "number", "number", "number", "str"]
COLS = [MODEL_COL, MSVAMP_COL, MGSM_COL, MNUM_COL,NOTES_COL]
TYPES = ["str", "number", "number", "number","html"]
def get_leaderboard_df():
df = list()
results = [
["GPT-3.5-Turbo", 46.6, 42.2, 49.4,'GPT-3.5-Turbo'],
["MAmmoTH 7B", 26.3, 21.3, 24.2,'<a href="https://arxiv.org/abs/2309.05653" target="_blank">MAmmoTH</a>'],
["WizardMath 7B", 32.5, 23.0, 28.7,'<a href="https://arxiv.org/abs/2308.09583" target="_blank">WizardMath</a>'],
["MetaMath 7B", 46.2, 37.0, 43.2,'<a href="https://arxiv.org/abs/2309.12284" target="_blank">MetaMath</a>'],
["MetaMath-LB-9B",None,50.2,None,'<a href="https://arxiv.org/abs/2401.10695" target="_blank">LangBridge</a>'],
["XCoT 7B",42.9,41.5,None,'<a href="https://arxiv.org/abs/2401.07037" target="_blank">XCoT</a>'],
["QAlign 7B", 57.2, 49.6, None,'<a href="https://arxiv.org/abs/2401.07817" target="_blank">QAlign</a>'],
["MathOctopus 7B", 41.2, 39.5, 37.1,'<a href="https://arxiv.org/abs/2310.20246" target="_blank">MathOctopus</a>'],
["MathOctopus-MAPO-DPO 7B", 57.4, 41.6, 50.4,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
["MetaMathOctopus 7B", 53.0, 45.5, 39.2,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
["MetaMathOctopus-MAPO-DPO 7B 👑", 64.7, 51.6, 52.9,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
["MistralMathOctopus 7B", 59.0, 58.0, 56.8,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
["MistralMathOctopus-MAPO-DPO 7B 👑", 74.6, 67.3, 70.0,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
]
df = pd.DataFrame.from_records(results, columns=COLS)
df = df.sort_values(by=[ MSVAMP_COL], ascending=False)
df = df[COLS]
return df
def get_leaderboard_13Bdf():
df = list()
results = [
["GPT-3.5-Turbo", 46.6, 42.2, 49.4,'GPT-3.5-Turbo'],
["MAmmoTH 13B", 38.6, 28.9, 29.5,'<a href="https://arxiv.org/abs/2309.05653" target="_blank">MAmmoTH</a>'],
["WizardMath 13B", 35.7, 28.3, 29.0,'<a href="https://arxiv.org/abs/2308.09583" target="_blank">WizardMath</a>'],
["MetaMath 13B", 46.2, 43.9, 43.3,'<a href="https://arxiv.org/abs/2309.12284" target="_blank">MetaMath</a>'],
["QAlign 13B", 62.6, 57.1, None,'<a href="https://arxiv.org/abs/2401.07817" target="_blank">QAlign</a>'],
["MathOctopus 13B", 51.8, 46.0, 40.3,'<a href="https://arxiv.org/abs/2310.20246" target="_blank">MathOctopus</a>'],
["MetaMath-LB-15B",None,55.2,None,'<a href="https://arxiv.org/abs/2401.10695" target="_blank">LangBridge</a>'],
["MetaMath-LB-20B",None,56.7,None,'<a href="https://arxiv.org/abs/2401.10695" target="_blank">LangBridge</a>'],
["MathOctopus-MAPO-DPO 13B ", 60.1, 48.5, 53.8,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
["MetaMathOctopus 13B", 56.3, 51.4, 49.5,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
["MetaMathOctopus-MAPO-DPO 13B 👑", 67.0, 58.0, 59.8,'<a href="https://arxiv.org/abs/2401.06838" target="_blank">MAPO</a>'],
]
# for i in results:
# i.append(i[0])
df = pd.DataFrame.from_records(results, columns=COLS)
df = df.sort_values(by=[ MSVAMP_COL], ascending=False)
df = df[COLS]
return df
def search_table(df, query):
filtered_df = df[df[NOTES_COL].str.contains(query, case=False)]
return filtered_df
original_df = get_leaderboard_df()
original_13Bdf = get_leaderboard_13Bdf()
demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
#gr.Markdown(HOW_TO, elem_classes="markdown-text")
with gr.Group():
search_bar = gr.Textbox(
placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
)
original_df = original_df.applymap(format_floats)
leaderboard_table = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
elem_id="leaderboard-table",
)
# # Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df, headers=COLS, datatype=TYPES, visible=False
)
search_bar.change(
search_table,
[hidden_leaderboard_table_for_search, search_bar],
leaderboard_table,
)
with gr.Group():
search_bar = gr.Textbox(
placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
)
original_13Bdf = original_13Bdf.applymap(format_floats)
leaderboard_table_13B = gr.components.Dataframe(
value=original_13Bdf,
headers=COLS,
datatype=TYPES,
elem_id="leaderboard-table",
)
# # Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search_13B = gr.components.Dataframe(
value=original_13Bdf, headers=COLS, datatype=TYPES, visible=False
)
search_bar.change(
search_table,
[hidden_leaderboard_table_for_search_13B, search_bar],
leaderboard_table_13B,
)
gr.Markdown(CITATION, elem_classes="markdown-text")
demo.launch()
|