kevinhug commited on
Commit
bb4a4eb
·
1 Parent(s): 2671dc3

fine tune LLM

Browse files
Files changed (1) hide show
  1. app.py +21 -4
app.py CHANGED
@@ -30,9 +30,14 @@ FINE TUNE LLM LIKE SCORE
30
  '''
31
  from fastai.text.all import *
32
 
33
- import platform
34
  import pathlib
35
  p=pathlib.Path('./banks_txt_like.pkl').resolve()
 
 
 
 
 
36
  plt = platform.system()
37
  if plt == 'Windows':
38
  pathlib.PosixPath = pathlib.WindowsPath
@@ -63,7 +68,10 @@ with gr.Blocks() as demo:
63
  https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks/?select=Banks.csv
64
  """)
65
  with gr.Tab("Semantic Similarity Document Search (SSDS)"):
66
- in_similar = gr.Textbox(placeholder="having credit card problem")
 
 
 
67
  out_similar = gr.JSON()
68
 
69
  btn_similar = gr.Button("Find Similar Verbatim")
@@ -108,11 +116,20 @@ Using Sentence Embedding to inject Public ML Banks Text Dataset @ https://github
108
  """)
109
 
110
  with gr.Tab("Fine Tune LLM"):
111
- in_like = gr.Textbox(placeholder="having credit card problem")
112
- out_like = gr.Textbox(placeholder="like score")
 
 
113
 
114
  btn_like = gr.Button("Find Like Score")
115
  btn_like.click(fn=like, inputs=in_like, outputs=out_like)
 
 
 
 
 
 
 
116
 
117
  demo.launch()
118
 
 
30
  '''
31
  from fastai.text.all import *
32
 
33
+
34
  import pathlib
35
  p=pathlib.Path('./banks_txt_like.pkl').resolve()
36
+
37
+ '''
38
+ NotImplementedError: cannot instantiate ‘WindowsPath’ on your system
39
+ '''
40
+ import platform
41
  plt = platform.system()
42
  if plt == 'Windows':
43
  pathlib.PosixPath = pathlib.WindowsPath
 
68
  https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks/?select=Banks.csv
69
  """)
70
  with gr.Tab("Semantic Similarity Document Search (SSDS)"):
71
+ in_similar = gr.Textbox(placeholder="having credit card problem",
72
+ label="Issue",
73
+ info="issue you want to explore about"
74
+ )
75
  out_similar = gr.JSON()
76
 
77
  btn_similar = gr.Button("Find Similar Verbatim")
 
116
  """)
117
 
118
  with gr.Tab("Fine Tune LLM"):
119
+ in_like = gr.Textbox(placeholder="having credit card problem" , label="Issue",
120
+ info="issue you want to explore about")
121
+ out_like = gr.Textbox(placeholder="like score in range [2 to 248] from fine tuning data",
122
+ info="like score")
123
 
124
  btn_like = gr.Button("Find Like Score")
125
  btn_like.click(fn=like, inputs=in_like, outputs=out_like)
126
+ gr.Markdown("""
127
+ As a Data Scientist with a decades of financial industry experience, I recognize the paramount importance of staying closely tuned to our customer's needs and opinions. In this use case statement, we outline how fine-tuning a Language Model (LLM) on a custom dataset can provide valuable insights into customer sentiment across crucial areas such as service, sales, point of failure, product, and emerging trends.
128
+
129
+ Objective:
130
+ ---------
131
+ Our aim is to extract meaningful insights from customer interactions to improve our services, products, and overall customer experience. This analysis will help us understand what our customers are discussing and how they feel about different aspects of our business.
132
+ """)
133
 
134
  demo.launch()
135