cyber security
Browse files
app.py
CHANGED
@@ -76,16 +76,7 @@ https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks
|
|
76 |
|
77 |
[](https://hits.seeyoufarm.com)
|
78 |
""")
|
79 |
-
|
80 |
-
[
|
81 |
-
["having credit card problem", "having credit card problem"],
|
82 |
-
|
83 |
-
["low interest credit card", "low interest credit card"],
|
84 |
-
["upset customer", "upset customer"],
|
85 |
-
["what is the password", "what is the password"],
|
86 |
-
],
|
87 |
-
[in_similar, in_like]
|
88 |
-
)
|
89 |
with gr.Tab("Semantic Similarity Document Search (SSDS)"):
|
90 |
in_similar = gr.Textbox(placeholder="having credit card problem",
|
91 |
label="Issue",
|
@@ -96,6 +87,16 @@ https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks
|
|
96 |
btn_similar = gr.Button("Find Similar Verbatim")
|
97 |
btn_similar.click(fn=similar, inputs=in_similar, outputs=out_similar)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
gr.Markdown("""
|
100 |
Description:
|
101 |
=======
|
@@ -151,6 +152,16 @@ Customer-Centric Approach: Gain insights into customer concerns, allowing us to
|
|
151 |
|
152 |
btn_like = gr.Button("Classify Like Score")
|
153 |
btn_like.click(fn=like, inputs=in_like, outputs=out_like)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
gr.Markdown("""
|
155 |
Smart Insights: Elevating Customer Engagement Through Sentiment Analysis
|
156 |
=========
|
|
|
76 |
|
77 |
[](https://hits.seeyoufarm.com)
|
78 |
""")
|
79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
with gr.Tab("Semantic Similarity Document Search (SSDS)"):
|
81 |
in_similar = gr.Textbox(placeholder="having credit card problem",
|
82 |
label="Issue",
|
|
|
87 |
btn_similar = gr.Button("Find Similar Verbatim")
|
88 |
btn_similar.click(fn=similar, inputs=in_similar, outputs=out_similar)
|
89 |
|
90 |
+
gr.Examples(
|
91 |
+
[
|
92 |
+
["having credit card problem"],
|
93 |
+
|
94 |
+
["low interest credit card"],
|
95 |
+
["upset customer"],
|
96 |
+
["what is the password"],
|
97 |
+
],
|
98 |
+
[in_similar]
|
99 |
+
)
|
100 |
gr.Markdown("""
|
101 |
Description:
|
102 |
=======
|
|
|
152 |
|
153 |
btn_like = gr.Button("Classify Like Score")
|
154 |
btn_like.click(fn=like, inputs=in_like, outputs=out_like)
|
155 |
+
|
156 |
+
gr.Examples(
|
157 |
+
[
|
158 |
+
["having credit card problem"],
|
159 |
+
["low interest credit card"],
|
160 |
+
["upset customer"],
|
161 |
+
["what is the password"],
|
162 |
+
],
|
163 |
+
[in_like]
|
164 |
+
)
|
165 |
gr.Markdown("""
|
166 |
Smart Insights: Elevating Customer Engagement Through Sentiment Analysis
|
167 |
=========
|