cyber security
Browse files
app.py
CHANGED
|
@@ -76,16 +76,7 @@ https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks
|
|
| 76 |
|
| 77 |
[](https://hits.seeyoufarm.com)
|
| 78 |
""")
|
| 79 |
-
|
| 80 |
-
[
|
| 81 |
-
["having credit card problem", "having credit card problem"],
|
| 82 |
-
|
| 83 |
-
["low interest credit card", "low interest credit card"],
|
| 84 |
-
["upset customer", "upset customer"],
|
| 85 |
-
["what is the password", "what is the password"],
|
| 86 |
-
],
|
| 87 |
-
[in_similar, in_like]
|
| 88 |
-
)
|
| 89 |
with gr.Tab("Semantic Similarity Document Search (SSDS)"):
|
| 90 |
in_similar = gr.Textbox(placeholder="having credit card problem",
|
| 91 |
label="Issue",
|
|
@@ -96,6 +87,16 @@ https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks
|
|
| 96 |
btn_similar = gr.Button("Find Similar Verbatim")
|
| 97 |
btn_similar.click(fn=similar, inputs=in_similar, outputs=out_similar)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
gr.Markdown("""
|
| 100 |
Description:
|
| 101 |
=======
|
|
@@ -151,6 +152,16 @@ Customer-Centric Approach: Gain insights into customer concerns, allowing us to
|
|
| 151 |
|
| 152 |
btn_like = gr.Button("Classify Like Score")
|
| 153 |
btn_like.click(fn=like, inputs=in_like, outputs=out_like)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
gr.Markdown("""
|
| 155 |
Smart Insights: Elevating Customer Engagement Through Sentiment Analysis
|
| 156 |
=========
|
|
|
|
| 76 |
|
| 77 |
[](https://hits.seeyoufarm.com)
|
| 78 |
""")
|
| 79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
with gr.Tab("Semantic Similarity Document Search (SSDS)"):
|
| 81 |
in_similar = gr.Textbox(placeholder="having credit card problem",
|
| 82 |
label="Issue",
|
|
|
|
| 87 |
btn_similar = gr.Button("Find Similar Verbatim")
|
| 88 |
btn_similar.click(fn=similar, inputs=in_similar, outputs=out_similar)
|
| 89 |
|
| 90 |
+
gr.Examples(
|
| 91 |
+
[
|
| 92 |
+
["having credit card problem"],
|
| 93 |
+
|
| 94 |
+
["low interest credit card"],
|
| 95 |
+
["upset customer"],
|
| 96 |
+
["what is the password"],
|
| 97 |
+
],
|
| 98 |
+
[in_similar]
|
| 99 |
+
)
|
| 100 |
gr.Markdown("""
|
| 101 |
Description:
|
| 102 |
=======
|
|
|
|
| 152 |
|
| 153 |
btn_like = gr.Button("Classify Like Score")
|
| 154 |
btn_like.click(fn=like, inputs=in_like, outputs=out_like)
|
| 155 |
+
|
| 156 |
+
gr.Examples(
|
| 157 |
+
[
|
| 158 |
+
["having credit card problem"],
|
| 159 |
+
["low interest credit card"],
|
| 160 |
+
["upset customer"],
|
| 161 |
+
["what is the password"],
|
| 162 |
+
],
|
| 163 |
+
[in_like]
|
| 164 |
+
)
|
| 165 |
gr.Markdown("""
|
| 166 |
Smart Insights: Elevating Customer Engagement Through Sentiment Analysis
|
| 167 |
=========
|