kevinhug commited on
Commit
a6b6a76
·
1 Parent(s): 0acac7a
Files changed (5) hide show
  1. app.py +22 -25
  2. requirements.txt +0 -2
  3. xgb/data.png +0 -0
  4. xgb/feature.png +0 -0
  5. xgb/record.png +0 -0
app.py CHANGED
@@ -105,14 +105,6 @@ def like(issue):
105
  '''
106
  EXPLAINABLE AI
107
  '''
108
- import shap
109
- df=pd.read_csv("xgb/re.csv")
110
- df.columns=['id', 'date', 'age', 'dist_subway', 'dist_stores', 'lat', 'long', 'price']
111
- data=df.loc[:,['age', 'dist_subway', 'dist_stores', 'lat', 'long', 'price']]
112
-
113
- from sklearn.model_selection import train_test_split
114
- X,y=data.iloc[:,:-1],data.iloc[:,-1]
115
- X_train, X_test, y_train,y_test=train_test_split(X,y, test_size=0.1, random_state=42)
116
 
117
 
118
  '''
@@ -228,25 +220,30 @@ With no need for jargon, SSDS delivers tangible value to our fintech operations.
228
  """)
229
 
230
  with gr.Tab("Explainable AI"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
 
232
 
233
- file_name = 'xgb/xgb.model'
234
- bst = pickle.load(open(file_name, "rb"))
235
- explainer_xgb = shap.Explainer(bst) # , X100)
236
- shap_values_xgb = explainer_xgb(X_test)
237
-
238
- sample_ind = 20
239
- shap.partial_dependence_plot(
240
- "dist_subway",
241
- bst.predict,
242
- X_test,
243
- model_expected_value=True,
244
- feature_expected_value=True,
245
- ice=False,
246
- shap_values=shap_values_xgb[sample_ind: sample_ind + 1, :],
247
- )
248
- shap.force_plot(explainer_xgb.expected_value, shap_values_xgb[0].values, X_test.iloc[0], matplotlib=True)
249
- shap.plots.beeswarm(shap_values_xgb)
250
 
251
  with gr.Tab("Fine Tune LLM"):
252
  in_like = gr.Textbox(placeholder="having credit card problem" , label="Issue",
 
105
  '''
106
  EXPLAINABLE AI
107
  '''
 
 
 
 
 
 
 
 
108
 
109
 
110
  '''
 
220
  """)
221
 
222
  with gr.Tab("Explainable AI"):
223
+ gr.Markdown("""
224
+ Explain by Dataset
225
+ =============
226
+ ![](xgb/data.png)
227
+ sorted feature from top(most import)
228
+
229
+ dist_subway when at low value(green) make big impact to price
230
+
231
+ Explain by Feature
232
+ =============
233
+ ![](xgb/feature.png)
234
+ dist lower than 900 spike the price f(x)
235
+
236
+ also highlighted the shap value for record[20] at around 6500
237
+
238
+ Explain by Record
239
+ =============
240
+ ![](xgb/record.png)
241
+ the largest contribution to positive price is dist_subway
242
+
243
+ second contribution is age
244
 
245
+ """)
246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
 
248
  with gr.Tab("Fine Tune LLM"):
249
  in_like = gr.Textbox(placeholder="having credit card problem" , label="Issue",
requirements.txt CHANGED
@@ -5,5 +5,3 @@ pandas==2.1.3
5
  #yfinance==0.2.31
6
  #scikit-learn
7
  plotly
8
- shap
9
- xgboost
 
5
  #yfinance==0.2.31
6
  #scikit-learn
7
  plotly
 
 
xgb/data.png ADDED
xgb/feature.png ADDED
xgb/record.png ADDED