kevinhug commited on
Commit
319b0bc
·
1 Parent(s): 13b84a9
Files changed (3) hide show
  1. app.py +17 -3
  2. xgb/credit_data.png +0 -0
  3. xgb/credit_record.png +0 -0
app.py CHANGED
@@ -232,13 +232,27 @@ Full dataset at the bottom of this tab
232
 
233
  Explain by Context
234
  ===============
235
- - Below are explanation in typical background E[f(x)]
 
 
 
 
 
 
 
236
 
237
- - Sometime it is useful to switch to credit healthy background, to explain why a certain person default by changing the baseline E[f(x) | credit healthy] with interventional feature perturbation
238
- https://arxiv.org/pdf/2006.16234.pdf
 
 
 
 
 
239
 
240
  Explain by Dataset
241
  ===============
 
 
242
  ![Summary](file=./xgb/data.png)
243
 
244
  **Key insights:**
 
232
 
233
  Explain by Context
234
  ===============
235
+ - Sometimes, understanding why an individual defaults requires shifting to a credit-healthy background, altering the baseline E[f(x) | credit healthy] using interventional feature perturbation ([source](https://arxiv.org/pdf/2006.16234.pdf)).
236
+
237
+ [UCI Machine Learning Repository - Credit Default Dataset](https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset)
238
+
239
+ ![Credit Record Summary](file=./xgb/credit_record.png)
240
+ **Observations from a healthy credit background:**
241
+ - This individual defaults due to **PAY_0=2** and **PAY_6=2**.
242
+ - PAY_0 represents repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, … 8=payment delay for eight months, 9=payment delay for nine months and above).
243
 
244
+ ![Credit Data Summary](file=./xgb/credit_data.png)
245
+ **Insights from a healthy credit background:**
246
+ - Default patterns relate to high **PAY_0/PAY_2** (payment delay) and low **LIMIT_BAL** (lack of liquidity).
247
+ - LIMIT_BAL signifies the amount of given credit in NT dollars (includes individual and family/supplementary credit).
248
+ - BILL_AMT1 indicates the bill statement amount in September, 2005 (NT dollar).
249
+
250
+ This approach leverages context-specific explanations within credit health parameters to reveal why individuals default, providing valuable insights into repayment behavior and financial health.
251
 
252
  Explain by Dataset
253
  ===============
254
+ - Below are explanation in typical background E[f(x)]
255
+
256
  ![Summary](file=./xgb/data.png)
257
 
258
  **Key insights:**
xgb/credit_data.png ADDED
xgb/credit_record.png ADDED