kevinhug commited on
Commit
2d72659
·
1 Parent(s): 24b7694
Files changed (1) hide show
  1. app.py +23 -10
app.py CHANGED
@@ -12,6 +12,7 @@ TIME SERIES ANALYTICS
12
  '''
13
  import yfinance as yf
14
  import seaborn as sns
 
15
 
16
  def trend(t):
17
  data = yf.download(t, period="3mo")
@@ -23,12 +24,11 @@ def trend(t):
23
  data.loc[:,('Volume_MA',c)]=q.rolling(9).mean() -q.rolling(42).mean()
24
 
25
  ma=data.loc[:,["Volume_MA","Close_MA"]].tail(15)
26
- from sklearn.preprocessing import StandardScaler
27
  std=StandardScaler()
28
  result=std.fit_transform(ma)
29
  df=pd.DataFrame(result,columns=ma.columns)
30
  d=df.tail(1).stack(level=-1).droplevel(0, axis=0)
31
- return sns.scatterplot(d, x="Close_MA", y="Volume_MA",hue=d.index.values)
32
 
33
  '''
34
  SIMILAR VECTOR DB SEARCH
@@ -193,6 +193,27 @@ With no need for jargon, SSDS delivers tangible value to our fintech operations.
193
  ],
194
  [in_like]
195
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  gr.Markdown("""
197
  Smart Insights: Elevating Customer Engagement Through Sentiment Analysis
198
  =========
@@ -206,14 +227,6 @@ Use Case:
206
  - intervene attrition through incentive
207
 
208
  """)
209
- with gr.Tab("Trading Analyics"):
210
- in_ts = gr.Textbox(placeholder="QQQM CIF VEGI PJP",
211
- label="Ticker",
212
- info="Identify Industry Trend, (top right is grow trending)"
213
- )
214
- plot = gr.Plot(label="Identify Trend/Decline Industry")
215
- btn_ts = gr.Button("Find Trending Industry")
216
- btn_ts.click(fn=trend, inputs=in_ts, outputs=[plot])
217
 
218
  demo.launch()
219
 
 
12
  '''
13
  import yfinance as yf
14
  import seaborn as sns
15
+ from sklearn.preprocessing import StandardScaler
16
 
17
  def trend(t):
18
  data = yf.download(t, period="3mo")
 
24
  data.loc[:,('Volume_MA',c)]=q.rolling(9).mean() -q.rolling(42).mean()
25
 
26
  ma=data.loc[:,["Volume_MA","Close_MA"]].tail(15)
 
27
  std=StandardScaler()
28
  result=std.fit_transform(ma)
29
  df=pd.DataFrame(result,columns=ma.columns)
30
  d=df.tail(1).stack(level=-1).droplevel(0, axis=0)
31
+ return gr.ScatterPlot(d, x="Close_MA", y="Volume_MA",color=d.index.values)
32
 
33
  '''
34
  SIMILAR VECTOR DB SEARCH
 
193
  ],
194
  [in_like]
195
  )
196
+ gr.Markdown("""
197
+ Maximizing Trading Efficiency: Investment in Modernization and Growth Industries
198
+ =========
199
+ The industry life cycle is a useful tool for traders to identify growth and decline industries. It describes the evolution of an industry based on its stages of growth and decline 1. There are four phases of the industry life cycle: introduction, growth, maturity, and decline 2.
200
+
201
+ A growth industry is a sector of an economy that experiences a higher-than-average growth rate compared to other sectors. Growth industries are often new or pioneer industries that did not exist in the past. Their growth is a result of demand for new products or services offered by companies in the field 3. Identifying growth industries can help traders to speed up trading by investing in companies that are likely to experience rapid growth in the future.
202
+
203
+ On the other hand, a decline industry is a sector of an economy that is experiencing a lower-than-average growth rate compared to other sectors. Identifying decline industries can help traders to avoid investing in companies that are likely to experience a decline in the future 2. This can help traders to minimize losses and maximize profits.
204
+
205
+ By identifying growth and decline industries, traders can make informed investment decisions and speed up trading by investing in companies that are likely to experience growth in the future and avoiding companies that are likely to experience a decline in the future.
206
+ """)
207
+ with gr.Tab("Trading Analyics"):
208
+ in_ts = gr.Textbox(placeholder="QQQM CIF VEGI PJP",
209
+ label="Ticker",
210
+ info="Identify Industry Trend, (top right is grow trending)"
211
+ )
212
+ plot = gr.ScatterPlot()
213
+ #plot = gr.Plot(label="Identify Trend/Decline Industry")
214
+ btn_ts = gr.Button("Find Trending Industry")
215
+ btn_ts.click(fn=trend, inputs=in_ts, outputs=plot)
216
+
217
  gr.Markdown("""
218
  Smart Insights: Elevating Customer Engagement Through Sentiment Analysis
219
  =========
 
227
  - intervene attrition through incentive
228
 
229
  """)
 
 
 
 
 
 
 
 
230
 
231
  demo.launch()
232