kevinhug commited on
Commit
076eeb7
·
1 Parent(s): c1afbf3
app.py CHANGED
@@ -232,9 +232,10 @@ Full dataset at the bottom of this tab
232
 
233
  Explain by Context
234
  ===============
235
- Below are explaination in typical background E[f(x)]
236
 
237
- Sometime it is useful to switch to credit healthy background, to explain why a certain person default by changing the baseline E[f(x) | credit healthy] with interventional feature perturbation
 
238
 
239
  Explain by Dataset
240
  ===============
@@ -281,19 +282,20 @@ Explain by Top 5 Error Example
281
  ![Top 5 Error Data](file=./xgb/error_data.png)
282
 
283
  **Top Features for Errors:**
284
- - **Age** stands out as the top feature impacting the top 5 errors negatively (for young ages).
285
 
286
  ![Error Record](file=./xgb/error_record.png)
287
  **Top 1 Error:**
288
  - Notably, young age has a negative impact on pricing (top 1 error).
 
289
 
290
  ![Error Feature](file=./xgb/error_feature.png)
291
  **Insight from Errors:**
292
- - Further distance from the subway might positively impact pricing for the top 5 errors.
293
 
294
  ![Error Instance](file=./xgb/error_instance.png)
295
  **Error Instances:**
296
- - Younger age negatively impacts price, while older age positively impacts it for the top 5 errors.
297
 
298
  ML Observability
299
  ===============
 
232
 
233
  Explain by Context
234
  ===============
235
+ - Below are explanation in typical background E[f(x)]
236
 
237
+ - Sometime it is useful to switch to credit healthy background, to explain why a certain person default by changing the baseline E[f(x) | credit healthy] with interventional feature perturbation
238
+ https://arxiv.org/pdf/2006.16234.pdf
239
 
240
  Explain by Dataset
241
  ===============
 
282
  ![Top 5 Error Data](file=./xgb/error_data.png)
283
 
284
  **Top Features for Errors:**
285
+ - **dist_subway, age** stands out as the top feature impacting the top 5 errors negatively (for young ages).
286
 
287
  ![Error Record](file=./xgb/error_record.png)
288
  **Top 1 Error:**
289
  - Notably, young age has a negative impact on pricing (top 1 error).
290
+ - lat has positive impact
291
 
292
  ![Error Feature](file=./xgb/error_feature.png)
293
  **Insight from Errors:**
294
+ - Further distance from the subway might positively impact pricing for the top 5 errors at around 700
295
 
296
  ![Error Instance](file=./xgb/error_instance.png)
297
  **Error Instances:**
298
+ - Younger age negatively impacts price, while older age positively impacts price for the top 5 errors.
299
 
300
  ML Observability
301
  ===============
xgb/error_data.png CHANGED
xgb/error_feature.png CHANGED
xgb/error_instance.png CHANGED
xgb/error_record.png CHANGED