multi agent
Browse files
app.py
CHANGED
@@ -144,8 +144,8 @@ With the right competitive research, you don’t just react to the market—you
|
|
144 |
|
145 |
gr.Examples(
|
146 |
[
|
147 |
-
|
148 |
-
"Docker Containers", "REST API", "Python"
|
149 |
],
|
150 |
[in_verbatim]
|
151 |
)
|
|
|
144 |
|
145 |
gr.Examples(
|
146 |
[
|
147 |
+
|
148 |
+
"Docker Containers", "REST API", "Python"
|
149 |
],
|
150 |
[in_verbatim]
|
151 |
)
|
multi.py
CHANGED
@@ -5,20 +5,22 @@ from agno.tools.duckduckgo import DuckDuckGoTools
|
|
5 |
from agno.models.ollama import Ollama
|
6 |
from agno.models.groq import Groq
|
7 |
import os
|
8 |
-
chat=Groq(id='llama-3.
|
|
|
9 |
# Create individual specialized agents
|
10 |
researcher = Agent(
|
11 |
name="Researcher",
|
12 |
-
role="Expert at finding information by breaking the structure into components",
|
13 |
-
tools=[DuckDuckGoTools()],
|
14 |
show_tool_calls=True,
|
|
|
15 |
model=chat, #OpenAIChat("gpt-4o"),
|
16 |
#debug_mode=True,
|
17 |
)
|
18 |
|
19 |
engineer = Agent(
|
20 |
name="Security Engineer",
|
21 |
-
role="Security Expert at writing clear, engaging content for hands-on best practices, and common pitfalls with solution",
|
22 |
model=chat, #OpenAIChat("gpt-4o"),
|
23 |
)
|
24 |
|
@@ -33,14 +35,14 @@ content_team = Team(
|
|
33 |
)
|
34 |
def bestPractice(topic):
|
35 |
r = content_team.run(topic)
|
36 |
-
return r.messages[-1].content
|
37 |
|
38 |
if __name__=='__main__':
|
39 |
from pprint import pprint
|
40 |
from agno.utils.pprint import pprint_run_response
|
41 |
r=content_team.run("Docker Containers")
|
42 |
pprint_run_response(r, markdown=True)
|
43 |
-
print([m
|
44 |
|
45 |
|
46 |
print("")
|
|
|
5 |
from agno.models.ollama import Ollama
|
6 |
from agno.models.groq import Groq
|
7 |
import os
|
8 |
+
#chat=Groq(id='llama-3.3-70b-versatile') if os.getenv("GROQ_API_KEY") else
|
9 |
+
chat=Ollama(id="qwen2.5")
|
10 |
# Create individual specialized agents
|
11 |
researcher = Agent(
|
12 |
name="Researcher",
|
13 |
+
role="Expert at finding information by breaking the structure into components ie) architecture, code, algorithm, linux system",
|
14 |
+
tools=[DuckDuckGoTools(fixed_max_results=3)],
|
15 |
show_tool_calls=True,
|
16 |
+
tool_call_limit=1,
|
17 |
model=chat, #OpenAIChat("gpt-4o"),
|
18 |
#debug_mode=True,
|
19 |
)
|
20 |
|
21 |
engineer = Agent(
|
22 |
name="Security Engineer",
|
23 |
+
role="Security Expert at writing short, clear, engaging content for hands-on best practices, and common pitfalls with solution",
|
24 |
model=chat, #OpenAIChat("gpt-4o"),
|
25 |
)
|
26 |
|
|
|
35 |
)
|
36 |
def bestPractice(topic):
|
37 |
r = content_team.run(topic)
|
38 |
+
return [m for m in r.messages if m.role == 'assistant'][-1].content
|
39 |
|
40 |
if __name__=='__main__':
|
41 |
from pprint import pprint
|
42 |
from agno.utils.pprint import pprint_run_response
|
43 |
r=content_team.run("Docker Containers")
|
44 |
pprint_run_response(r, markdown=True)
|
45 |
+
print([m for m in r.messages if m.role == 'assistant'][-1].content)
|
46 |
|
47 |
|
48 |
print("")
|