local embedding
Browse files- rag.py +3 -0
- requirements.txt +1 -1
rag.py
CHANGED
@@ -13,11 +13,14 @@ df['content']=df['product']+"; "+df['purpose']+"; "+df['benefit']+"; "+df['fee']
|
|
13 |
corpus = [row['content'] for i,row in df.iterrows()]
|
14 |
|
15 |
'huggingface/BAAI/bge-small-en-v1.5'
|
|
|
16 |
from sentence_transformers import SentenceTransformer
|
17 |
|
18 |
# Load an extremely efficient local model for retrieval
|
19 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device="cpu")
|
20 |
embedder = dspy.Embedder(model.encode)
|
|
|
|
|
21 |
class RecommendProduct(dspy.Signature):
|
22 |
"""
|
23 |
Recommend RBC financial product based on verbatim
|
|
|
13 |
corpus = [row['content'] for i,row in df.iterrows()]
|
14 |
|
15 |
'huggingface/BAAI/bge-small-en-v1.5'
|
16 |
+
"""
|
17 |
from sentence_transformers import SentenceTransformer
|
18 |
|
19 |
# Load an extremely efficient local model for retrieval
|
20 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device="cpu")
|
21 |
embedder = dspy.Embedder(model.encode)
|
22 |
+
"""
|
23 |
+
embedder = dspy.Embedder('huggingface/BAAI/bge-small-en')
|
24 |
class RecommendProduct(dspy.Signature):
|
25 |
"""
|
26 |
Recommend RBC financial product based on verbatim
|
requirements.txt
CHANGED
@@ -2,7 +2,7 @@ markdownify
|
|
2 |
requests
|
3 |
duckduckgo_search
|
4 |
pandas
|
5 |
-
sentence_transformers
|
6 |
langchain
|
7 |
langgraph
|
8 |
litellm==1.63
|
|
|
2 |
requests
|
3 |
duckduckgo_search
|
4 |
pandas
|
5 |
+
#sentence_transformers
|
6 |
langchain
|
7 |
langgraph
|
8 |
litellm==1.63
|