multi class
Browse files- app.py +3 -1
- classify.py +5 -3
app.py
CHANGED
@@ -63,6 +63,8 @@ Relevant offers encourage repeat visits and build long-term loyalty.
|
|
63 |
- Inventory Optimization
|
64 |
Promotes underperforming products or clears surplus stock with strategic recommendations.
|
65 |
|
|
|
|
|
66 |
Marketing
|
67 |
------------
|
68 |
- GraphRAG: Models customer-product relationship networks for next-best-action predictions
|
@@ -253,7 +255,7 @@ Allows downstream tasks (like sentiment analysis or topic modeling) to focus on
|
|
253 |
Objective: Classify customer feedback into product bucket
|
254 |
================================================
|
255 |
""")
|
256 |
-
in_verbatim = gr.Textbox(label="Customer Feedback")
|
257 |
out_product = gr.Textbox(label="Classification")
|
258 |
|
259 |
gr.Examples(
|
|
|
63 |
- Inventory Optimization
|
64 |
Promotes underperforming products or clears surplus stock with strategic recommendations.
|
65 |
|
66 |
+
If you're experiencing declining market share or inefficiencies in your operations, here's how I can help:
|
67 |
+
==============
|
68 |
Marketing
|
69 |
------------
|
70 |
- GraphRAG: Models customer-product relationship networks for next-best-action predictions
|
|
|
255 |
Objective: Classify customer feedback into product bucket
|
256 |
================================================
|
257 |
""")
|
258 |
+
in_verbatim = gr.Textbox(label="Customer Feedback separate by ;")
|
259 |
out_product = gr.Textbox(label="Classification")
|
260 |
|
261 |
gr.Examples(
|
classify.py
CHANGED
@@ -22,20 +22,22 @@ client = instructor.from_openai(
|
|
22 |
),
|
23 |
mode=instructor.Mode.JSON,
|
24 |
)
|
|
|
|
|
25 |
"""
|
26 |
llm = 'llama-3.1-8b-instant' if os.getenv("GROQ_API_KEY") else "deepseek-r1"
|
27 |
|
28 |
|
29 |
class Tag(BaseModel):
|
30 |
|
31 |
-
|
32 |
name: str
|
33 |
id: int= Field(..., description="id for the specific tag")
|
34 |
confidence: float = Field(
|
35 |
default=0.5,
|
36 |
ge=0,
|
37 |
le=1,
|
38 |
-
description="The confidence of the prediction for
|
39 |
)
|
40 |
|
41 |
@field_validator('confidence', mode="after")
|
@@ -157,7 +159,7 @@ texts = """
|
|
157 |
"""
|
158 |
|
159 |
def bucket(texts):
|
160 |
-
texts=texts.split(";")
|
161 |
request = TagRequest(texts=texts, tags=tags)
|
162 |
|
163 |
response = asyncio.run(tag_request(request))
|
|
|
22 |
),
|
23 |
mode=instructor.Mode.JSON,
|
24 |
)
|
25 |
+
|
26 |
+
chain_of_thought:List[str]= Field(default_factory=list, description="the chain of thought led to the prediction", examples=["Let's think step by step. the customer explicitly mention donation, and there is a tag name with donation, tag the text with donation"])
|
27 |
"""
|
28 |
llm = 'llama-3.1-8b-instant' if os.getenv("GROQ_API_KEY") else "deepseek-r1"
|
29 |
|
30 |
|
31 |
class Tag(BaseModel):
|
32 |
|
33 |
+
|
34 |
name: str
|
35 |
id: int= Field(..., description="id for the specific tag")
|
36 |
confidence: float = Field(
|
37 |
default=0.5,
|
38 |
ge=0,
|
39 |
le=1,
|
40 |
+
description="The confidence of the prediction(id, name) for the text, 0 is low, 1 is high",examples=[0.5,0.1,0.9]
|
41 |
)
|
42 |
|
43 |
@field_validator('confidence', mode="after")
|
|
|
159 |
"""
|
160 |
|
161 |
def bucket(texts):
|
162 |
+
texts=map(lambda t: t.strip(), texts.split(";"))
|
163 |
request = TagRequest(texts=texts, tags=tags)
|
164 |
|
165 |
response = asyncio.run(tag_request(request))
|