image correct
Browse files- app.py +4 -4
- knowledge.py +1 -1
app.py
CHANGED
@@ -275,14 +275,14 @@ Customer: "No, thank you."
|
|
275 |
)
|
276 |
btn_recommend = gr.Button("Graph It!")
|
277 |
btn_clear = gr.ClearButton(components=[out_product])
|
278 |
-
btn_recommend.click(fn=graph, inputs=in_verbatim, outputs=out_product)
|
279 |
|
280 |
|
281 |
gr.Markdown("""
|
282 |
Example of Customer Profile in Graph
|
283 |
=================
|
284 |
-

|
276 |
btn_recommend = gr.Button("Graph It!")
|
277 |
btn_clear = gr.ClearButton(components=[out_product])
|
278 |
+
btn_recommend.click(fn=graph, inputs=[in_verbatim, out_product], outputs=out_product)
|
279 |
|
280 |
|
281 |
gr.Markdown("""
|
282 |
Example of Customer Profile in Graph
|
283 |
=================
|
284 |
+

|
285 |
+

|
286 |
|
287 |
Benefits of a Knowledge Graph
|
288 |
============
|
|
|
447 |
gr.Markdown("""
|
448 |
Example of Call Resolution
|
449 |
===============
|
450 |
+

|
451 |
|
452 |
Companies like RBC, Comcast, or BMO often face a recurring challenge: long, complex customer service calls filled with vague product references, overlapping account details, and unstructured issue descriptions. This makes it difficult for support teams and analytics engines to extract clear insights or resolve recurring pain points across accounts and products.
|
453 |
|
knowledge.py
CHANGED
@@ -155,7 +155,7 @@ def expandIssue(input) -> Iterable[Subissue]:
|
|
155 |
|
156 |
def graph(query, queryx):
|
157 |
#queryx = expandIssue(query)
|
158 |
-
if queryx
|
159 |
graph = generate_graph(query)
|
160 |
else:
|
161 |
graph = generate_graph(query, KnowledgeGraph.model_validate_json(queryx))
|
|
|
155 |
|
156 |
def graph(query, queryx):
|
157 |
#queryx = expandIssue(query)
|
158 |
+
if queryx.strip() == "":
|
159 |
graph = generate_graph(query)
|
160 |
else:
|
161 |
graph = generate_graph(query, KnowledgeGraph.model_validate_json(queryx))
|