human-in-the-loop
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from knowledge import graph
|
|
6 |
from pii import derisk
|
7 |
from classify import judge
|
8 |
from entity import resolve
|
|
|
9 |
|
10 |
# Define the Google Analytics script
|
11 |
head = """
|
@@ -478,4 +479,44 @@ For example, Comcast reduced repeat service calls by 17% after deploying entity
|
|
478 |
|
479 |
The result? Less agent time lost, higher customer satisfaction, and data pipelines that actually speak human.
|
480 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
demo.launch(allowed_paths=["."])
|
|
|
6 |
from pii import derisk
|
7 |
from classify import judge
|
8 |
from entity import resolve
|
9 |
+
from human import email, feedback
|
10 |
|
11 |
# Define the Google Analytics script
|
12 |
head = """
|
|
|
479 |
|
480 |
The result? Less agent time lost, higher customer satisfaction, and data pipelines that actually speak human.
|
481 |
""")
|
482 |
+
with gr.Tab("Human Feedback Content"):
|
483 |
+
gr.Markdown("""
|
484 |
+
Objective: Leveraging Human Feedback to Deliver Personalized Content that Proactively Solves Customer Pain Points
|
485 |
+
================================================
|
486 |
+
""")
|
487 |
+
|
488 |
+
in_verbatim = gr.Textbox(label="Persona")
|
489 |
+
in_campaign = gr.Textbox(label="campaign")
|
490 |
+
out_product = gr.Textbox(label="Your Personalized Email Campaign Bot")
|
491 |
+
|
492 |
+
gr.Examples(
|
493 |
+
[
|
494 |
+
["""My mortgage rate is 9%, I cannot afford it anymore, I need to refinance and I'm unemploy right now.""", "MORT"],
|
495 |
+
["my credit card limit is too low, I need a card with bigger limit and low fee", "CARD"]
|
496 |
+
],
|
497 |
+
[in_verbatim, in_campaign]
|
498 |
+
)
|
499 |
+
btn_recommend = gr.Button("Resolve")
|
500 |
+
btn_recommend.click(fn=email, inputs=[in_verbatim, in_campaign, out_product], outputs=out_product)
|
501 |
+
|
502 |
+
h_feedback = gr.Radio(['approved', 'rejected'], label="Human Feedback", info="Which campaign you want to approve?")
|
503 |
+
h_campaign = gr.Textbox(label="campaign")
|
504 |
+
btn_deliver = gr.Button("Deliver?")
|
505 |
+
btn_deliver.click(fn=feedback, inputs=[h_feedback, h_campaign, out_product], outputs=out_product)
|
506 |
+
|
507 |
+
gr.Markdown("""
|
508 |
+
Human Feedback for Personalized Content enables brands like Mr. Cooper to analyze customer preferences and pain points, then deliver tailored solutions. By embedding real-time feedback loops, they created personalized mortgage-refinancing videos showcasing individual home equity data and financial goals, resulting in 18% higher engagement and 12% lower churn.
|
509 |
+
|
510 |
+
#### Outcome:
|
511 |
+
|
512 |
+
- Dynamic content adaptation based on behavioral data (e.g., Hilton Honors’ app reduced booking friction by 40% via predictive analytics)
|
513 |
+
|
514 |
+
- Proactive problem-solving (e.g., Orangetheory Fitness used workout metrics to boost class attendance to 97%)
|
515 |
+
|
516 |
+
- 52% faster ROI through AI-driven personalization scaling
|
517 |
+
|
518 |
+
#### Ask: Ready to turn customer frustrations into loyalty drivers with content that feels personally crafted?"
|
519 |
+
|
520 |
+
This approach aligns with best-in-class use cases where feedback-driven personalization drives measurable business growth
|
521 |
+
""")
|
522 |
demo.launch(allowed_paths=["."])
|
human.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Annotated, Any, Literal
|
2 |
+
|
3 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
from langchain_core.tools import tool
|
6 |
+
from langgraph.checkpoint.memory import MemorySaver
|
7 |
+
from langgraph.graph import StateGraph, START, END
|
8 |
+
from langgraph.graph.message import add_messages
|
9 |
+
from langgraph.types import interrupt, Command
|
10 |
+
from typing_extensions import TypedDict
|
11 |
+
|
12 |
+
"""
|
13 |
+
from langchain_anthropic import ChatAnthropic
|
14 |
+
from langchain_ollama.llms import OllamaLLM
|
15 |
+
from langchain_experimental.llms.ollama_functions import OllamaFunctions
|
16 |
+
llm = OllamaFunctions(model="qwen2.5", format="json")
|
17 |
+
llm_with_tools = llm #.bind_tools(tools)
|
18 |
+
"""
|
19 |
+
|
20 |
+
from langchain_groq import ChatGroq
|
21 |
+
|
22 |
+
llm = ChatGroq(
|
23 |
+
model="llama-3.1-8b-instant",
|
24 |
+
temperature=0,
|
25 |
+
max_tokens=None,
|
26 |
+
timeout=None,
|
27 |
+
max_retries=2,
|
28 |
+
# other params...
|
29 |
+
)
|
30 |
+
|
31 |
+
template = """Question: {question}
|
32 |
+
Answer: Let's think step by step."""
|
33 |
+
|
34 |
+
prompt = ChatPromptTemplate.from_template(template)
|
35 |
+
|
36 |
+
# model = OllamaLLM(model="deepseek-r1")
|
37 |
+
|
38 |
+
chain = prompt | llm
|
39 |
+
|
40 |
+
|
41 |
+
# print(chain.invoke({"question": "Explain like I'm 5 for capacity planning?"}))
|
42 |
+
|
43 |
+
@tool
|
44 |
+
def human_assistance(query: str) -> str:
|
45 |
+
"""Request assistance from a human."""
|
46 |
+
human_response = interrupt({"query": query})
|
47 |
+
return human_response["data"]
|
48 |
+
|
49 |
+
|
50 |
+
tool = TavilySearchResults(max_results=2)
|
51 |
+
tools = [tool, human_assistance]
|
52 |
+
llm_with_tools=llm.bind_tools(tools)
|
53 |
+
|
54 |
+
# llm = OllamaLLM(model="deepseek-r1") #ChatAnthropic(model="claude-3-5-sonnet-20240620")
|
55 |
+
|
56 |
+
class State(TypedDict):
|
57 |
+
messages: Annotated[list, add_messages]
|
58 |
+
persona: str
|
59 |
+
email: str
|
60 |
+
release: Literal['approve', 'reject']
|
61 |
+
|
62 |
+
|
63 |
+
graph_builder = StateGraph(State)
|
64 |
+
|
65 |
+
|
66 |
+
def write_email(state: State):
|
67 |
+
prompt = f"""Write an promotional personalized email for this persona:
|
68 |
+
{state["persona"]}
|
69 |
+
"""
|
70 |
+
email = llm_with_tools.invoke(prompt)
|
71 |
+
# Because we will be interrupting during tool execution,
|
72 |
+
# we disable parallel tool calling to avoid repeating any
|
73 |
+
# tool invocations when we resume.
|
74 |
+
# assert len(email.tool_calls) <= 1
|
75 |
+
return Command(update={"email": email.content})
|
76 |
+
|
77 |
+
|
78 |
+
graph_builder.add_node("write_email", write_email)
|
79 |
+
|
80 |
+
|
81 |
+
def delivery(state: State):
|
82 |
+
print(f"""Delivering: {state['email']}""")
|
83 |
+
|
84 |
+
return Command(update={"messages": ["Email delivered to customer"]})
|
85 |
+
|
86 |
+
|
87 |
+
graph_builder.add_node("delivery", delivery)
|
88 |
+
|
89 |
+
|
90 |
+
def human_approval(state: State) -> Command[Literal["delivery", END]]:
|
91 |
+
is_approved = interrupt(
|
92 |
+
"Approval for release the promotional email to customer? (type: approved or rejected):"
|
93 |
+
)
|
94 |
+
|
95 |
+
if is_approved == "approved":
|
96 |
+
return Command(goto="delivery", update={"release": "approved"})
|
97 |
+
else:
|
98 |
+
return Command(goto=END, update={"release": "rejected"})
|
99 |
+
|
100 |
+
|
101 |
+
# Add the node to the graph in an appropriate location
|
102 |
+
# and connect it to the relevant nodes.
|
103 |
+
graph_builder.add_node("human_approval", human_approval)
|
104 |
+
|
105 |
+
graph_builder.add_edge(START, "write_email")
|
106 |
+
graph_builder.add_edge("write_email", "human_approval")
|
107 |
+
|
108 |
+
graph_builder.add_edge("delivery", END)
|
109 |
+
|
110 |
+
checkpointer = MemorySaver()
|
111 |
+
graph = graph_builder.compile(checkpointer=checkpointer)
|
112 |
+
|
113 |
+
|
114 |
+
def email(persona, campaign, history):
|
115 |
+
thread_config = {"configurable": {"thread_id": campaign}}
|
116 |
+
for event in graph.stream({"persona": persona}, config=thread_config):
|
117 |
+
for value in event.values():
|
118 |
+
return r"\nAssistant: ", value, r"\nValue: ", graph.get_state(thread_config).values
|
119 |
+
|
120 |
+
|
121 |
+
def feedback(deliver, campaign, history):
|
122 |
+
thread_config = {"configurable": {"thread_id": campaign}}
|
123 |
+
for event in graph.stream(Command(resume=deliver), config=thread_config):
|
124 |
+
for value in event.values():
|
125 |
+
return r"\nAssistant: ", value, r"\nValue: ", graph.get_state(thread_config).values
|
126 |
+
|
127 |
+
|
128 |
+
'''
|
129 |
+
from IPython.display import Image, display
|
130 |
+
|
131 |
+
try:
|
132 |
+
display(Image(graph.get_graph().draw_mermaid_png()))
|
133 |
+
except Exception:
|
134 |
+
# This requires some extra dependencies and is optional
|
135 |
+
pass
|
136 |
+
'''
|
137 |
+
|
138 |
+
def campaign(user_input: Any, id: str):
|
139 |
+
thread_config = {"configurable": {"thread_id": id}}
|
140 |
+
for event in graph.stream(user_input, config=thread_config):
|
141 |
+
for value in event.values():
|
142 |
+
print("Assistant:", value, "Value: ", graph.get_state(thread_config).values)
|
143 |
+
|
144 |
+
"""
|
145 |
+
campaign({"persona": "My mortgage rate is 9%, I cannot afford it anymore, I need to refinance and I'm unemploy right now."}, "MOR")
|
146 |
+
|
147 |
+
campaign({"persona": "my credit card limit is too low, I need a card with bigger limit and low fee"}, "CARD")
|
148 |
+
|
149 |
+
campaign(Command(resume="approved"), "MOR")
|
150 |
+
"""
|
151 |
+
|
152 |
+
while False:
|
153 |
+
try:
|
154 |
+
user_input = input("User: ")
|
155 |
+
if user_input.lower() in ["quit", "exit", "q"]:
|
156 |
+
print("Goodbye!")
|
157 |
+
break
|
158 |
+
campaign(user_input, "MORT")
|
159 |
+
# stream_graph_updates(user_input)
|
160 |
+
except Exception as e:
|
161 |
+
# fallback if input() is not available
|
162 |
+
user_input = "What do you know about LangGraph?"
|
163 |
+
print("User: " + user_input)
|
164 |
+
campaign(user_input, "MORT")
|
165 |
+
# stream_graph_updates(user_input)
|
166 |
+
break
|