keremberke's picture
upload space files
5ffca72
raw
history blame
3.02 kB
import json
import gradio as gr
import yolov5
from PIL import Image
from huggingface_hub import hf_hub_download
app_title = "Forklift Object Detection"
models_ids = ['keremberke/yolov5n-forklift', 'keremberke/yolov5s-forklift', 'keremberke/yolov5m-forklift']
article = f"<p style='text-align: center'> <a href='https://huggingface.co/{models_ids[-1]}'>model</a> | <a href='https://huggingface.co/keremberke/forklift-object-detection'>dataset</a> | <a href='https://github.com/keremberke/awesome-yolov5-models'>awesome-yolov5-models</a> </p>"
current_model_id = models_ids[-1]
model = yolov5.load(current_model_id)
examples = [['test_images/0EZMOXIBCFJ2_jpg.rf.e02f09f440a32adc6b8cd173d64048dd.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/998PSJQQZBXV_jpg.rf.b1302d4d0209aed943753848438f8aa6.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/BSMT1XOO121P_jpg.rf.dc69ec9589f362cd0b4d1f43fb316579.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/DJI_0005_0221_jpg.rf.955fd4d28e350da409f891d4b3a2d73e.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/DJI_0043_MOV-127_jpg.rf.a217394fc869d2736168845216aefa7f.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/DJI_0043_MOV-57_jpg.rf.a706f51366a5754325ee902769e8ffad.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/G25405S8CI7D_jpg.rf.519ff676dff32aa88b43e9f8d46f3371.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/img_049_jpg.rf.66cea1b105e1a5822d713a47e3d7b8c1.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/img_249_jpg.rf.e1b01660a85df7c00d5c31818a0c8c82.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/img_2640_jpg.rf.ed065aa127f8f841c25305c5c417b692.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/KUN8WG9S97QO_jpg.rf.7ec95d32b4559f0c5d4e4e1a5f0623d7.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/XVMZ924NFFU3_jpg.rf.5c1f76b37c69b3db293151909c912e42.jpg', 0.25, 'keremberke/yolov5m-forklift']]
def predict(image, threshold=0.25, model_id=None):
# update model if required
global current_model_id
global model
if model_id != current_model_id:
model = yolov5.load(model_id)
current_model_id = model_id
# get model input size
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
input_size = config["input_size"]
# perform inference
model.conf = threshold
results = model(image, size=input_size)
numpy_image = results.render()[0]
output_image = Image.fromarray(numpy_image)
return output_image
gr.Interface(
title=app_title,
description="Created by 'keremberke'",
article=article,
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Slider(maximum=1, step=0.01, value=0.25),
gr.Dropdown(models_ids, value=models_ids[-1]),
],
outputs=gr.Image(type="pil"),
examples=examples,
cache_examples=True if examples else False,
).launch(enable_queue=True)