File size: 2,996 Bytes
5002fd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import json
import gradio as gr
import yolov5
from PIL import Image
from huggingface_hub import hf_hub_download
app_title = "Forklift Object Detection"
models_ids = ['keremberke/yolov5n-forklift', 'keremberke/yolov5s-forklift', 'keremberke/yolov5m-forklift']
article = f"<p style='text-align: center'> <a href='https://huggingface.co/{models_ids[-1]}'>model</a> | <a href='https://huggingface.co/keremberke/forklift-object-detection'>dataset</a> | <a href='https://github.com/keremberke/awesome-yolov5-models'>awesome-yolov5-models</a> </p>"
current_model_id = models_ids[-1]
model = yolov5.load(current_model_id)
examples = [['test_images/32LSCZQDHZO7_jpg.rf.8fddaa4b5ed4db87d19a32d4554b9c23.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/6URLZIZIQ6S0_jpg.rf.4661cb4082077e616ec94250eea6328f.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/I91P1I5WNUZT_jpg.rf.c5c49a5f421751c30008a35e7b52087e.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/JWF31R9STW0L_jpg.rf.a785b0107b333fe746fe1c4c8d2f744f.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/LTDX8N8ZKBT2_jpg.rf.6e09889a432d15c19fa0fbdbb62d347f.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/M_01685_png.rf.57a2823eabfa135c0a508d18faa70ce3.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/M_03339_png.rf.f755ccc7bdf2a0ebc7e4553a0576ed50.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/M_04045_png.rf.31bd5eed4b55dbcafe568210774cb5dc.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/M_04302_png.rf.62eabd3a1cc0dbfcdffa9c5a9582f77c.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/M_07555_png.rf.9c2d725a383658227bc87891f68fe975.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/M_08430_png.rf.64508c4e583f64ac2cd431c99dc79834.jpg', 0.25, 'keremberke/yolov5m-forklift'], ['test_images/V75EBJ0AG2HV_jpg.rf.88822c95c57d6bfb33092eb5ec0a020c.jpg', 0.25, 'keremberke/yolov5m-forklift']]
def predict(image, threshold=0.25, model_id=None):
# update model if required
global current_model_id
global model
if model_id != current_model_id:
model = yolov5.load(model_id)
current_model_id = model_id
# get model input size
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
input_size = config["input_size"]
# perform inference
model.conf = threshold
results = model(image, size=input_size)
numpy_image = results.render()[0]
output_image = Image.fromarray(numpy_image)
return output_image
gr.Interface(
title=app_title,
description="Created by 'keremberke'",
article=article,
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Slider(maximum=1, step=0.01, value=0.25),
gr.Dropdown(models_ids, value=models_ids[-1]),
],
outputs=gr.Image(type="pil"),
examples=examples,
cache_examples=True if examples else False,
).launch(enable_queue=True)
|