File size: 3,437 Bytes
3d12539
 
 
 
 
 
 
 
 
 
7a44257
 
3d12539
7a44257
3d12539
7a44257
 
 
 
 
3d12539
7a44257
3d12539
7a44257
 
 
 
 
3d12539
7a44257
 
3d12539
7a44257
3d12539
7a44257
 
3d12539
7a44257
 
 
 
3d12539
7a44257
3d12539
7a44257
 
 
3d12539
7a44257
 
 
 
 
 
 
 
3d12539
7a44257
3d12539
7a44257
3d12539
7a44257
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
from utils.predict import predict_action
import os
import glob

##Create Dataset for loading examples
example_list = glob.glob("examples/*")
example_list = list(map(lambda el:[el], example_list))


# def load_example(video):
#     return video[0]

# demo = gr.Blocks()

input_video = gr.Video(label="Input Video", show_label=True)
output_label = gr.Label(label="Model Output", show_label=True)
output_gif = gr.Image(label="Video Gif", show_label=True)
title = "Video Classification with Transformers"
description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out πŸ€— "

article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'

gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
  title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)


# with demo:
    
#     gr.Markdown("# **<p align='center'>Video Classification with Transformers</p>**")
#     gr.Markdown("This space demonstrates the use of hybrid Transformer-based models for video classification that operate on CNN feature maps.")
    
#     with gr.Tabs():
                
#         with gr.TabItem("Upload & Predict"):
#             with gr.Box():
                
#                 with gr.Row():
#                     input_video = gr.Video(label="Input Video", show_label=True)
#                     output_label = gr.Label(label="Model Output", show_label=True)
#                     output_gif = gr.Image(label="Video Gif", show_label=True)
            
#             gr.Markdown("**Predict**")
            
#             with gr.Box():
#                 with gr.Row():
#                     submit_button = gr.Button("Submit")
            
#             gr.Markdown("**Examples:**")
#             gr.Markdown("The model is trained to classify videos belonging to the following classes:")
#             gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")

#             with gr.Column():
#                 # gr.Examples("examples", [input_video], [output_label,output_gif], predict_action, cache_examples=True)
#                 examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
#                 examples.click(load_example, examples, input_video)
        
#     submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
    
#     gr.Markdown('\n Author: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
    
# demo.launch()