Spaces:
Runtime error
Runtime error
| import matplotlib | |
| matplotlib.use('Agg') | |
| import gradio as gr | |
| import tensorflow as tf | |
| from huggingface_hub import from_pretrained_keras | |
| import numpy as np | |
| from collections import defaultdict | |
| import matplotlib.pyplot as plt | |
| import plotly.express as px | |
| from plotly import subplots | |
| import pandas as pd | |
| import random | |
| (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() | |
| x_data = np.concatenate([x_train, x_test]) | |
| y_data = np.concatenate([y_train, y_test]) | |
| num_classes = 10 | |
| classes = [ | |
| "airplane", | |
| "automobile", | |
| "bird", | |
| "cat", | |
| "deer", | |
| "dog", | |
| "frog", | |
| "horse", | |
| "ship", | |
| "truck", | |
| ] | |
| clustering_model = from_pretrained_keras("keras-io/semantic-image-clustering") | |
| # Get the cluster probability distribution of the input images. | |
| clustering_probs = clustering_model.predict(x_data, batch_size=500, verbose=1) | |
| # Get the cluster of the highest probability. | |
| cluster_assignments = tf.math.argmax(clustering_probs, axis=-1).numpy() | |
| # Store the clustering confidence. | |
| # Images with the highest clustering confidence are considered the 'prototypes' | |
| # of the clusters. | |
| cluster_confidence = tf.math.reduce_max(clustering_probs, axis=-1).numpy() | |
| clusters = defaultdict(list) | |
| for idx, c in enumerate(cluster_assignments): | |
| clusters[c].append((idx, cluster_confidence[idx])) | |
| def get_cluster_size(cluster_number: int): | |
| cluster_size = len(clusters[cluster_number-1]) | |
| return f"Cluster #{cluster_number} consists of {cluster_size} objects" | |
| def get_images_from_cluster(cluster_number: int, num_images: int, image_mode: str): | |
| position = 1 | |
| if image_mode == "Random Images from Cluster": | |
| cluster_instances = clusters[cluster_number-1] | |
| random.shuffle(cluster_instances) | |
| else : | |
| cluster_instances = sorted(clusters[cluster_number-1], key=lambda kv: kv[1], reverse=True) | |
| fig = plt.figure() | |
| for j in range(num_images): | |
| image_idx = cluster_instances[j][0] | |
| plt.subplot(1, num_images, position) | |
| plt.imshow(x_data[image_idx].astype("uint8")) | |
| plt.title(classes[y_data[image_idx][0]]) | |
| plt.axis("off") | |
| position += 1 | |
| fig.tight_layout() | |
| return fig | |
| # labels = [] | |
| # images = [] | |
| # for j in range(num_images): | |
| # image_idx = cluster_instances[j][0] | |
| # images.append(x_data[image_idx].astype("uint8")) | |
| # labels.append(classes[y_data[image_idx][0]]) | |
| # fig = subplots.make_subplots(rows=int(num_images/4)+1, cols=4, subplot_titles=labels) | |
| # for j in range(num_images): | |
| # fig.add_trace(px.imshow(images[j]).data[0], row=int(j/4)+1, col=j%4+1) | |
| # fig.update_xaxes(visible=False) | |
| # fig.update_yaxes(visible=False) | |
| # return fig | |
| def get_cluster_details(cluster_number: int): | |
| cluster_label_counts = list() | |
| cluster_label_counts = [0] * num_classes | |
| instances = clusters[cluster_number-1] | |
| for i, _ in instances: | |
| cluster_label_counts[y_data[i][0]] += 1 | |
| class_count = zip(classes, cluster_label_counts) | |
| class_count_dict = dict(class_count) | |
| count_df = pd.Series(class_count_dict).to_frame() | |
| fig_pie = px.pie(count_df, values=0, names=count_df.index, title='Number of class objects in cluster') | |
| return fig_pie | |
| def get_cluster_info(cluster_number: int, num_images: int, image_mode: str): | |
| cluster_size = get_cluster_size(cluster_number) | |
| img_fig = get_images_from_cluster(cluster_number, num_images, image_mode) | |
| detail_fig = get_cluster_details(cluster_number) | |
| return [cluster_size, img_fig, detail_fig] | |
| article = """<center> | |
| Authors: <a href='https://twitter.com/johko990' target='_blank'>Johannes Kolbe</a> after an example by [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/) on | |
| <a href='https://keras.io/examples/vision/semantic_image_clustering/' target='_blank'>**keras.io**</a>""" | |
| description = """<center> | |
| # Semantic Image Clustering | |
| This space is intended to give you insights to image clusters, created by a model trained with the [**Semantic Clustering by Adopting Nearest neighbors (SCAN)**](https://arxiv.org/abs/2005.12320)(Van Gansbeke et al., 2020) algorithm. | |
| First choose one of the 20 clusters, and how many images you want to preview from it. There are two options for the images either *Random*, which as you might guess, | |
| gives you random images from the cluster or *High Similarity*, which gives you images that are similar according to the learned representations of the cluster. | |
| """ | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| btn = gr.Button("Get Cluster Info") | |
| with gr.Column(): | |
| inp = [gr.Slider(minimum=1, maximum=20, step=1, label="Select Cluster"), | |
| gr.Slider(minimum=6, maximum=15, step=1, label="Number of Images to Show", value=8), | |
| gr.Radio(["Random Images from Cluster", "High Similarity Images"], label="Image Choice")] | |
| with gr.Row(): | |
| with gr.Column(): | |
| out1 = [gr.Text(label="Cluster Size"), gr.Plot(label="Image Examples"), gr.Plot(label="Class details")] | |
| gr.Markdown(article) | |
| btn.click(fn=get_cluster_info, inputs=inp, outputs=out1) | |
| demo.launch() | |