import numpy as np import tensorflow as tf from huggingface_hub import from_pretrained_keras import gradio as gr IMAGE_SIZE = 72 # labels taken from https://huggingface.co/datasets/cifar10 labels = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"} model = from_pretrained_keras("keras-io/randaugment") def predict_img_label(img): inp = tf.image.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) pred = model.predict(tf.expand_dims(inp, 0)).flatten() return {labels[i]: float(pred[i]) for i in range(len(labels))} image = gr.inputs.Image() label = gr.outputs.Label(num_top_classes=3) gr.Interface( fn=predict_img_label, inputs=image, outputs=label, interpretation="default").launch() title = "Image Classification Model Using RandAugment" description = "Upload an image to classify images" article = "
Space by Bishmoy Paul
Keras example by Sayak Paul
" gr.Interface(predict_img_label, inputs=image, outputs=label, allow_flagging=False, analytics_enabled=False, title=title, description=description, article=article).launch(enable_queue=True)