bishmoy commited on
Commit
8d4307c
·
1 Parent(s): 8c23ea0

Initial Commit

Browse files

Added the model inference pipeline.

Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import tensorflow as tf
3
+ from huggingface_hub import from_pretrained_keras
4
+ import gradio as gr
5
+
6
+ IMAGE_SIZE = 72
7
+ # labels taken from https://huggingface.co/datasets/cifar10
8
+ labels = {0: "airplane",
9
+ 1: "automobile"
10
+ 2: "bird"
11
+ 3: "cat"
12
+ 4: "deer"
13
+ 5: "dog"
14
+ 6: "frog"
15
+ 7: "horse"
16
+ 8: "ship"
17
+ 9: "truck"}
18
+
19
+
20
+ model = from_pretrained_keras("keras-io/randaugment")
21
+
22
+
23
+
24
+ def predict_img_label(img):
25
+ inp = tf.image.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
26
+ pred = model.predict(tf.expand_dims(inp, 0)).flatten()
27
+ return {labels[i]: float(pred[i]) for i in range(len(labels))}
28
+
29
+ image = gr.inputs.Image()
30
+ label = gr.outputs.Label(num_top_classes=3)
31
+
32
+ gr.Interface(
33
+ fn=predict_img_label, inputs=image, outputs=label, interpretation="default").launch()
34
+
35
+ title = "Image Classification Model Using RandAugment"
36
+ description = "Upload an image to classify images"
37
+
38
+ article = "<div style='text-align: center;'><a href='https://github.com/BishmoyPaul' target='_blank'>Space by Bishmoy Paul</a><br><a href='https://keras.io/examples/vision/randaugment/' target='_blank'>Keras example by Sayak Paul</a></div>"
39
+ gr.Interface(predict_img_label, inputs=image, outputs=label, allow_flagging=False, analytics_enabled=False,
40
+ title=title, description=description, article=article).launch(enable_queue=True)