# import the necessary packages from tensorflow.keras import layers import tensorflow as tf import matplotlib.pyplot as plt import math class PlotAttention: def __init__(self, model): self.model = model def __call__(self, image): # resize the image to a 224, 224 dim image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, (224, 224)) image = image[tf.newaxis, ...] # pass through the stem test_x = self.model.stem(image) # pass through the trunk test_x = self.model.trunk(test_x) # pass through the attention pooling block _, test_viz_weights = self.model.attention_pooling(test_x) test_viz_weights = test_viz_weights[tf.newaxis, ...] # reshape the vizualization weights num_patches = tf.shape(test_viz_weights)[-1] height = width = int(math.sqrt(num_patches)) test_viz_weights = layers.Reshape((height, width))(test_viz_weights) index = 0 selected_image = image[index] selected_weight = test_viz_weights[index] fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) ax[0].imshow(selected_image) ax[0].set_title(f"Original") ax[0].axis("off") img = ax[1].imshow(selected_image) ax[1].imshow(selected_weight, cmap='inferno', alpha=0.6, extent=img.get_extent()) ax[1].set_title(f"Attended") ax[1].axis("off") plt.axis("off") return plt