import pandas as pd import numpy as np from zipfile import ZipFile import tensorflow as tf from tensorflow import keras from pathlib import Path import matplotlib.pyplot as plt import gradio as gr from huggingface_hub import from_pretrained_keras # Download the actual data from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip" # Use the ratings.csv file movielens_data_file_url = ( "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip" ) movielens_zipped_file = keras.utils.get_file( "ml-latest-small.zip", movielens_data_file_url, extract=False ) keras_datasets_path = Path(movielens_zipped_file).parents[0] movielens_dir = keras_datasets_path / "ml-latest-small" # Only extract the data the first time the script is run. if not movielens_dir.exists(): with ZipFile(movielens_zipped_file, "r") as zip: # Extract files print("Extracting all the files now...") zip.extractall(path=keras_datasets_path) print("Done!") ratings_file = movielens_dir / "ratings.csv" df = pd.read_csv(ratings_file) # Make all the encodings user_ids = df["userId"].unique().tolist() user2user_encoded = {x: i for i, x in enumerate(user_ids)} userencoded2user = {i: x for i, x in enumerate(user_ids)} movie_ids = df["movieId"].unique().tolist() movie2movie_encoded = {x: i for i, x in enumerate(movie_ids)} movie_encoded2movie = {i: x for i, x in enumerate(movie_ids)} df["user"] = df["userId"].map(user2user_encoded) df["movie"] = df["movieId"].map(movie2movie_encoded) num_users = len(user2user_encoded) num_movies = len(movie_encoded2movie) df["rating"] = df["rating"].values.astype(np.float32) # min and max ratings will be used to normalize the ratings later min_rating = min(df["rating"]) max_rating = max(df["rating"]) # Load model model = from_pretrained_keras('mindwrapped/collaborative-filtering-movielens') movie_df = pd.read_csv(movielens_dir / "movies.csv") def update_user(id): return get_top_rated_from_user(id), get_recommendations(id) def get_top_rated_from_user(id): decoded_id = userencoded2user.get(id) movies_watched_by_user = df[df.userId == decoded_id] # Get the top rated movies by this user top_movies_user = ( movies_watched_by_user.sort_values(by="rating", ascending=False) .head(5) .movieId.values ) movie_df_rows = movie_df[movie_df["movieId"].isin(top_movies_user)] movie_df_rows = movie_df_rows.drop('movieId', axis=1) return movie_df_rows def random_user(): return update_user(np.random.randint(0, num_users)) def get_recommendations(id): decoded_id = userencoded2user.get(id) movies_watched_by_user = df[df.userId == decoded_id] # Get the top 10 recommended movies for this user movies_not_watched = movie_df[ ~movie_df["movieId"].isin(movies_watched_by_user.movieId.values) ]["movieId"] movies_not_watched = list( set(movies_not_watched).intersection(set(movie2movie_encoded.keys())) ) movies_not_watched = [[movie2movie_encoded.get(x)] for x in movies_not_watched] # Encode user user_encoder = id # Create data [[user_id, movie_id],...] user_movie_array = np.hstack( ([[user_encoder]] * len(movies_not_watched), movies_not_watched) ) # Predict ratings for movies not watched ratings = model.predict(user_movie_array).flatten() # Get indices of top ten movies top_ratings_indices = ratings.argsort()[-10:][::-1] # Decode each movie recommended_movie_ids = [ movie_encoded2movie.get(movies_not_watched[x][0]) for x in top_ratings_indices ] recommended_movies = movie_df[movie_df["movieId"].isin(recommended_movie_ids)] recommended_movies = recommended_movies.drop('movieId', axis=1) return recommended_movies demo = gr.Blocks() with demo: with gr.Box(): gr.Markdown( """ ## Input #### Select a user to get recommendations for. """) inp1 = gr.Slider(0, num_users, value=0, label='User') # btn1 = gr.Button('Random User') # top_rated_from_user = get_top_rated_from_user(0) gr.Markdown( """ #### Movies with the Highest Ratings from this user """) df1 = gr.DataFrame(interactive=False) with gr.Box(): gr.Markdown('## Output') # recommendations = get_recommendations(0) gr.Markdown( """ #### Top 10 movie recommendations """) df2 = gr.DataFrame(interactive=False) gr.HTML("""
Keras Example by Siddhartha Banerjee
Space by Scott Krstyen (mindwrapped)