from huggingface_hub import from_pretrained_keras import matplotlib.pyplot as plt from math import sqrt, ceil import tensorflow as tf import gradio as gr import numpy as np model1 = tf.keras.models.load_model("mnist.h5", compile=False) model2 = from_pretrained_keras("keras-io/WGAN-GP") title = "WGAN-GP" description = "Image Generation Using WGAN" article = """

Keras Example given by A_K_Nain
Space by Gitesh Chawda

""" def Predict(model, num_images): random_latent_vectors = tf.random.normal(shape=(int(num_images), 128)) preds = model(random_latent_vectors) num = ceil(sqrt(num_images)) images = np.zeros((28*num, 28*num), dtype=float) n = 0 for i in range(num): for j in range(num): if n == num_images: break images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = preds[n, :, :, 0] n += 1 return images def inference(num_images, select: str): if select == 'fmnist': result = create_digit_samples(model2, num_images) else: result = create_digit_samples(model1, num_images) return result examples = [[5],[8],[2],[3]] inputs = [gr.inputs.Number(label="number of images"), gr.inputs.Radio(['fmnist', 'mnist'])] outputs = gr.outputs.Image(label="Output Image") interface = gr.Interface( fn = inference, inputs = inputs, outputs = outputs, examples = examples, description = description, title = title, article = article ) interface.launch(share=True)