File size: 3,974 Bytes
4c4da3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
from load_model import load_model
import matplotlib.pyplot as plt
from tensorflow.keras import layers
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
import numpy as np

model = load_model()

# Load the Data
data = make_moons(3000, noise=0.05)[0].astype("float32")
norm = layers.experimental.preprocessing.Normalization()
norm.adapt(data)
normalized_data = norm(data)
z, _ = model(normalized_data)

demo = gr.Blocks()

with demo:
    gr.Markdown("""# Density estimation using Real NVP <br>
    This demo shows a toy example of using Real NVP (real-valued non-volume preserving transformations)
    from this [example](https://keras.io/examples/generative/real_nvp/). Below we have two tabs. The first, Inference, shows
    our mapping from a data distribution (moons) to a latent space with a known distribution (Gaussian). Click the button to see how a data point from our distribution maps
    to our latent space. Our second tab allows you to generate a sample from our latent space, and view the generated data space that is associated with it.
    
    Full credits for this model & example
    go to <br>[Mandolini Giorgio Maria](https://www.linkedin.com/in/giorgio-maria-mandolini-a2a1b71b4/),
    [Sanna Daniele](https://www.linkedin.com/in/daniele-sanna-338629bb/),
    and [Zannini Quirini Giorgio](https://www.linkedin.com/in/giorgio-zannini-quirini-16ab181a0/).<br>
    Demo by [Brenden Connors](https://www.linkedin.com/in/brenden-connors-6a0512195).""")

    with gr.Tabs():
        with gr.TabItem('Inference'):
            button = gr.Button(value='Infer Sample Point')

            with gr.Row():
                fig = plt.figure()       
                plt.scatter(normalized_data[:, 0], normalized_data[:, 1], color="r")
                plt.xlim([-2, 2])
                plt.ylim([-2, 2])
                plt.title('Inference Data Space')
                fig2 = plt.figure()
                plt.scatter(z[:, 0], z[:, 1], color="r")
                plt.xlim([-3.5, 4])
                plt.ylim([-3.5, 4])
                plt.title('Inference Latent Space')
                data_space = gr.Plot(value = fig)
                latent_space = gr.Plot(value = fig2)
        with gr.TabItem('Generation'):
            button_generate = gr.Button('Generate')
            
            with gr.Row():
                fig3 = plt.figure()
                
                fig4 = plt.figure()
                generated_lspace = gr.Plot(fig3)
                generated_dspace = gr.Plot(fig4)
                
    def inference_sample():
        idx = np.random.choice(normalized_data.shape[0])
        new_fig1 = plt.figure()
        plt.scatter(normalized_data[:, 0], normalized_data[:, 1], color="r")
        plt.scatter(normalized_data[idx, 0], normalized_data[idx, 1], color="b")
        plt.title('Inference Data Space')
        plt.xlim([-2, 2])
        plt.ylim([-2, 2])
        output, _ = model(np.array(normalized_data[idx, :]).reshape((1, 2)))

        new_fig2 = plt.figure()
        plt.scatter(z[:, 0], z[:, 1], color="r")
        plt.scatter(output[0,0] , output[0,1], color="b")
        plt.xlim([-3.5, 4])
        plt.ylim([-3.5, 4])
        plt.title('Inference Latent Space')
        return new_fig1, new_fig2
    
    def generate():
        samples = model.distribution.sample(3000)
        x, _ = model.predict(samples)
        
        new_fig1=plt.figure()
        plt.scatter(samples[:,0], samples[:,1])
        plt.title('Generated Latent Space')
        plt.xlim([-3.5, 4])
        plt.ylim([-3.5, 4])
        
        new_fig2=plt.figure()
        plt.scatter(x[:,0], x[:,1])
        plt.title('Generated Data Space')
        plt.xlim([-2, 2])
        plt.ylim([-2, 2])
        return new_fig1, new_fig2
    button.click(inference_sample, inputs=[], outputs=[data_space, latent_space])
    button_generate.click(generate, inputs=[], outputs=[generated_lspace, generated_dspace])
    
demo.launch()