File size: 3,590 Bytes
17bfa78
 
cce3967
 
 
17bfa78
 
 
 
 
a48faf2
 
fa537b7
b9e2c00
 
 
360006a
e06f31d
ede89a8
a48faf2
e06f31d
b001ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466dfe
b001ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7666174
ede89a8
a225cab
ede89a8
 
 
a90db2d
ede89a8
 
 
 
 
 
3faa42a
ede89a8
 
 
 
 
3faa42a
7cc5fb4
3faa42a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f142df9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
title: README
emoji: ❤️
colorFrom: red
colorTo: red
sdk: streamlit
app_file: app.py
pinned: false
---

<div class="lg:col-span-3">
	<p class="mb-4">
	Hugging Face makes it easy to collaboratively build and showcase your <a
		href="https://keras.io">Keras</a
	>
	models!<br />
You can collaborate with your organization, upload and showcase your own models in your profile, or join us in this organization to demo Keras examples! ❤️

</p>
</div>

<a href="https://keras.io/" class="block overflow-hidden group">
	<div
		class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
	>
		<img alt="" src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-filter.png" class="w-40" />
	</div>
	<div class="underline">Keras.io</div>
</a>
<a
	href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60"
	class="block overflow-hidden group"
>
	<div
		class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
	>
		<img
			alt=""
			src="https://huggingface.co/spaces/keras-io/README/resolve/main/push_to_hub.png"
			class="w-full h-40 object-cover overflow-hidden"
		/>
	</div>
	<div class="underline">Push your Keras models to Hub ❤️ </div>
</a>
<a
	href="https://huggingface.co/models?library=keras&sort=downloads"
	class="block overflow-hidden group"
>
	<div
		class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
	>
		<img
			alt=""
			src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-hf.png"
			class="w-full h-40 object-cover overflow-hidden"
		/>
	</div>
	<div class="underline">Find all Keras models on the 🤗 Hub</div>
</a>


<div class="lg:col-span-3">
	<p class="mb-4">
		To upload your Keras models to the Hub, you can use the <a
			href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60"
			>push_to_hub_keras</a
		>
		function.
	</p>
	<div
		class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
	>
		<pre
			class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from huggingface_hub.keras_mixin import push_to_hub_keras
push_to_hub_keras(model = model, repo_url = "https://huggingface.co/your-username/name-of-model")
	</pre>
	</div>
</p>
<div class="lg:col-span-1">
	<p class="mb-4">
		If you'd like to upload 🤗Transformers based Keras checkpoints and let us host your metrics interactively in the repo in with TensorBoard, use <a
			href="https://huggingface.co/transformers/v4.12.5/_modules/transformers/keras_callbacks.html#PushToHubCallback"
			>PushToHubCallback</a
		>
		like follows:
	</p>
	<div
		class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
	>
		<pre
			class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from transformers.keras_callbacks import PushToHubCallback
from tensorflow.keras.callbacks import TensorBoard as TensorboardCallback
tensorboard_callback = TensorBoard(log_dir = "./logs/tensorboard)

push_to_hub_callback = PushToHubCallback(output_dir="./logs", tokenizer=tokenizer,hub_model_id=model_id,)

callbacks = [tensorboard_callback, push_to_hub_callback]
model.fit(..., callbacks=callbacks, ...)
	</pre>
	
</div>