Spaces:
Running
Running
File size: 4,424 Bytes
17bfa78 cce3967 17bfa78 a48faf2 ac2fe6a b9e2c00 360006a e06f31d 7232b8e ede89a8 a48faf2 e06f31d b001ae7 2466dfe b001ae7 7666174 ede89a8 a225cab ede89a8 a90db2d ede89a8 3faa42a ede89a8 425f31f ede89a8 3faa42a 425f31f 7cc5fb4 3faa42a 322260a 3faa42a 5a58d64 3faa42a 5a58d64 3faa42a 5a58d64 3faa42a 322260a 3faa42a f142df9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
title: README
emoji: ❤️
colorFrom: red
colorTo: red
sdk: streamlit
app_file: app.py
pinned: false
---
<div class="lg:col-span-3">
<p class="mb-4">
Welcome to the Keras Working Group 🤗 Please join us on <a
href="https://hf.co/join/discord">keras-working-group channel on Discord</a
> 👾!
Hugging Face makes it easy to collaboratively build and showcase your <a
href="https://keras.io">Keras</a
>
models!<br />
You can collaborate with your organization, upload and showcase your own models in your profile, or join us in this organization to demo Keras examples! ❤️
</p>
</div>
<a href="https://keras.io/" class="block overflow-hidden group">
<div
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
>
<img alt="" src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-filter.png" class="w-40" />
</div>
<div class="underline">Keras.io</div>
</a>
<a
href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60"
class="block overflow-hidden group"
>
<div
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
>
<img
alt=""
src="https://huggingface.co/spaces/keras-io/README/resolve/main/push_to_hub.png"
class="w-full h-40 object-cover overflow-hidden"
/>
</div>
<div class="underline">Push your Keras models to Hub ❤️ </div>
</a>
<a
href="https://huggingface.co/models?library=keras&sort=downloads"
class="block overflow-hidden group"
>
<div
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
>
<img
alt=""
src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-hf.png"
class="w-full h-40 object-cover overflow-hidden"
/>
</div>
<div class="underline">Find all Keras models on the 🤗 Hub</div>
</a>
<div class="lg:col-span-3">
<p class="mb-4">
To upload your Keras models to the Hub, you can use the <a
href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60"
>push_to_hub_keras</a
>
function.
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from huggingface_hub.keras_mixin import push_to_hub_keras
push_to_hub_keras(model = model, repo_url = "https://huggingface.co/your-username/your-awesome-model")
</pre>
</div>
</p>
<div class="lg:col-span-3">
<p class="mb-4">
To load Keras models from the 🤗Hub, use <a
href="https://github.com/huggingface/huggingface_hub/blob/d3ba39a69bb5570eb7f31ce76a19b53fdc89728b/src/huggingface_hub/keras_mixin.py#L56"
>from_pretrained_keras</a
>
function.
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from huggingface_hub.keras_mixin import from_pretrained_keras
from_pretrained_keras("your-username/your-awesome-model)
</pre>
</div>
<div class="lg:col-span-1">
<p class="mb-4">
If you'd like to upload 🤗Transformers based Keras checkpoints and let us host your metrics interactively in the repo in with TensorBoard, use <a
href="https://huggingface.co/transformers/v4.12.5/_modules/transformers/keras_callbacks.html#PushToHubCallback"
>PushToHubCallback</a
>
like follows:
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from transformers.keras_callbacks import PushToHubCallback
from tensorflow.keras.callbacks import TensorBoard
tensorboard_callback = TensorBoard(log_dir = "./logs/tensorboard)
push_to_hub_callback = PushToHubCallback(output_dir="./logs",
tokenizer=tokenizer,
hub_model_id=model_id)
callbacks = [tensorboard_callback, push_to_hub_callback]
model.fit(..., callbacks=callbacks, ...)
</pre>
</div>
|