File size: 2,926 Bytes
17bfa78
 
cce3967
 
 
17bfa78
 
 
 
 
a48faf2
 
fa537b7
b9e2c00
 
 
360006a
e06f31d
ede89a8
a48faf2
e06f31d
 
7cc5fb4
e79b9f8
 
735dff6
e79b9f8
65af7c4
e79b9f8
65af7c4
e79b9f8
60e3605
e79b9f8
60e3605
e79b9f8
65af7c4
e79b9f8
65af7c4
e79b9f8
7cc5fb4
e06f31d
65af7c4
7666174
ede89a8
a225cab
ede89a8
 
 
a90db2d
ede89a8
 
 
 
 
 
3faa42a
ede89a8
 
 
 
 
3faa42a
7cc5fb4
3faa42a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
title: README
emoji: ❤️
colorFrom: red
colorTo: red
sdk: streamlit
app_file: app.py
pinned: false
---

<div class="lg:col-span-3">
	<p class="mb-4">
	Hugging Face makes it easy to collaboratively build and showcase your <a
		href="https://keras.io">Keras</a
	>
	models!<br />
You can collaborate with your organization, upload and showcase your own models in your profile, or join us in this organization to demo Keras examples! ❤️

</p>
</div>


<p>
<a href="https://keras.io/" class="block overflow-hidden group">
	<div
		class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
	>
		<img alt="" src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-hf.png" class="w-40" />
	</div>
	<div class="underline">Find all Keras models in the Hub</div>
</a>
<a href="https://keras.io/" class="block overflow-hidden group">
	<div
		class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
	>
		<img alt="" src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-filter.png" class="w-40" />
	</div>
	<div class="underline">Keras.io</div>
</a>



<div class="lg:col-span-3">
	<p class="mb-4">
		To upload your Keras models to the Hub, you can use the <a
			href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60"
			>push_to_hub_keras</a
		>
		function.
	</p>
	<div
		class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
	>
		<pre
			class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from huggingface_hub.keras_mixin import push_to_hub_keras
push_to_hub_keras(model = model, repo_url = "https://huggingface.co/your-username/name-of-model")
	</pre>
	</div>
</p>
<div class="lg:col-span-1">
	<p class="mb-4">
		If you'd like to upload 🤗Transformers based Keras checkpoints and let us host your metrics interactively in the repo in with TensorBoard, use <a
			href="https://huggingface.co/transformers/v4.12.5/_modules/transformers/keras_callbacks.html#PushToHubCallback"
			>PushToHubCallback</a
		>
		like follows:
	</p>
	<div
		class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
	>
		<pre
			class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from transformers.keras_callbacks import PushToHubCallback
from tensorflow.keras.callbacks import TensorBoard as TensorboardCallback
tensorboard_callback = TensorBoard(log_dir = "./logs/tensorboard)

push_to_hub_callback = PushToHubCallback(output_dir="./logs", tokenizer=tokenizer,hub_model_id=model_id,)

callbacks = [tensorboard_callback, push_to_hub_callback]
model.fit(..., callbacks=callbacks, ...)
	</pre>
	
	</div>