Spaces:
Running
Running
File size: 2,926 Bytes
17bfa78 cce3967 17bfa78 a48faf2 fa537b7 b9e2c00 360006a e06f31d ede89a8 a48faf2 e06f31d 7cc5fb4 e79b9f8 735dff6 e79b9f8 65af7c4 e79b9f8 65af7c4 e79b9f8 60e3605 e79b9f8 60e3605 e79b9f8 65af7c4 e79b9f8 65af7c4 e79b9f8 7cc5fb4 e06f31d 65af7c4 7666174 ede89a8 a225cab ede89a8 a90db2d ede89a8 3faa42a ede89a8 3faa42a 7cc5fb4 3faa42a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
title: README
emoji: ❤️
colorFrom: red
colorTo: red
sdk: streamlit
app_file: app.py
pinned: false
---
<div class="lg:col-span-3">
<p class="mb-4">
Hugging Face makes it easy to collaboratively build and showcase your <a
href="https://keras.io">Keras</a
>
models!<br />
You can collaborate with your organization, upload and showcase your own models in your profile, or join us in this organization to demo Keras examples! ❤️
</p>
</div>
<p>
<a href="https://keras.io/" class="block overflow-hidden group">
<div
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
>
<img alt="" src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-hf.png" class="w-40" />
</div>
<div class="underline">Find all Keras models in the Hub</div>
</a>
<a href="https://keras.io/" class="block overflow-hidden group">
<div
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
>
<img alt="" src="https://huggingface.co/spaces/keras-io/README/resolve/main/keras-filter.png" class="w-40" />
</div>
<div class="underline">Keras.io</div>
</a>
<div class="lg:col-span-3">
<p class="mb-4">
To upload your Keras models to the Hub, you can use the <a
href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60"
>push_to_hub_keras</a
>
function.
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from huggingface_hub.keras_mixin import push_to_hub_keras
push_to_hub_keras(model = model, repo_url = "https://huggingface.co/your-username/name-of-model")
</pre>
</div>
</p>
<div class="lg:col-span-1">
<p class="mb-4">
If you'd like to upload 🤗Transformers based Keras checkpoints and let us host your metrics interactively in the repo in with TensorBoard, use <a
href="https://huggingface.co/transformers/v4.12.5/_modules/transformers/keras_callbacks.html#PushToHubCallback"
>PushToHubCallback</a
>
like follows:
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
!pip install huggingface-hub
!huggingface-cli login
from transformers.keras_callbacks import PushToHubCallback
from tensorflow.keras.callbacks import TensorBoard as TensorboardCallback
tensorboard_callback = TensorBoard(log_dir = "./logs/tensorboard)
push_to_hub_callback = PushToHubCallback(output_dir="./logs", tokenizer=tokenizer,hub_model_id=model_id,)
callbacks = [tensorboard_callback, push_to_hub_callback]
model.fit(..., callbacks=callbacks, ...)
</pre>
</div>
|