Spaces:
Build error
Build error
Commit
·
3a9fef7
1
Parent(s):
7f4a53c
app.py
Browse files
app.py
CHANGED
@@ -11,20 +11,15 @@ from huggingface_hub import from_pretrained_keras
|
|
11 |
|
12 |
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
13 |
|
14 |
-
def predict(image_file):
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
print("image_file-->", tf.io.read_file(image_file))
|
19 |
-
|
20 |
-
image_list = []
|
21 |
-
|
22 |
-
segmentation_map = image_file.replace("images", "segmentation_map").replace("jpg", "png")
|
23 |
|
24 |
-
labels = image_file.replace("images", "segmentation_labels").replace("jpg", "bmp")
|
25 |
-
print("labels", labels)
|
26 |
|
27 |
-
image_list = [segmentation_map, image_file, labels]
|
28 |
|
29 |
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
30 |
image = tf.cast(image, tf.float32) / 127.5 - 1
|
@@ -67,10 +62,12 @@ def predict(image_file):
|
|
67 |
real_images = final_img_list
|
68 |
|
69 |
# return tf.squeeze(real_images[1], axis=0), fake_image
|
70 |
-
return
|
71 |
|
72 |
# input
|
73 |
-
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image")
|
|
|
|
|
74 |
|
75 |
facades_data = []
|
76 |
data_dir = 'examples/'
|
@@ -80,7 +77,7 @@ for idx, images in enumerate(os.listdir(data_dir)):
|
|
80 |
facades_data.append(image)
|
81 |
|
82 |
# output
|
83 |
-
output = [gr.outputs.Image(type="numpy", label="
|
84 |
|
85 |
title = "GauGAN For Conditional Image Generation"
|
86 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|
|
|
11 |
|
12 |
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
13 |
|
14 |
+
def predict(image_file, segmentation_png, bitmap_img):
|
15 |
+
image_list = [segmentation_png, image_file, bitmap_img]
|
16 |
+
|
17 |
+
#segmentation_map = image_file.replace("images", "segmentation_map").replace("jpg", "png")
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
#labels = image_file.replace("images", "segmentation_labels").replace("jpg", "bmp")
|
20 |
+
#print("labels", labels)
|
21 |
|
22 |
+
#image_list = [segmentation_map, image_file, labels]
|
23 |
|
24 |
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
25 |
image = tf.cast(image, tf.float32) / 127.5 - 1
|
|
|
62 |
real_images = final_img_list
|
63 |
|
64 |
# return tf.squeeze(real_images[1], axis=0), fake_image
|
65 |
+
return (fake_image[0]+1)/2
|
66 |
|
67 |
# input
|
68 |
+
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image (jpg)"),
|
69 |
+
gr.inputs.Image(type="filepath", label="Segementated image (png)"),
|
70 |
+
gr.inputs.Image(type="filepath", label="corresponding bitmap image (bmp)")]
|
71 |
|
72 |
facades_data = []
|
73 |
data_dir = 'examples/'
|
|
|
77 |
facades_data.append(image)
|
78 |
|
79 |
# output
|
80 |
+
output = [gr.outputs.Image(type="numpy", label="Generated - Conditioned Images")]
|
81 |
|
82 |
title = "GauGAN For Conditional Image Generation"
|
83 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|