
Intel® Trust Domain CPU Architectural Extensions

343754-002US
MAY 2021

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change without notice. Intel does
not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to deviate from published
specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated or simulated. Your costs
and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted that includes the subject
matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice.

Copies of documents that have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
might be claimed as the property of others.
ii Ref. # 343754-002

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Revision History

Revision Description Date

343754-001 Initial release. September 2020

343754-002 Intel Persistent SEAMLDR module support and other updates. May 2021
Ref. # 343754-002 iii

iv Ref. # 343754-002

REVISION HISTORY

CHAPTER 1
SECURE ARBITRATION MODE (SEAM)
1.1 Overview . 1-1
1.2 Intel® TDX Module and Intel P-SEAMLDR Module . 1-3
1.3 SEAM VMX Root Operation. 1-5
1.3.1 TDX Private KeyID. .1-6
1.3.2 Memory Typing. .1-8
1.3.3 Caching Translation Information .1-8
1.3.4 Event Handling .1-9
1.4 SEAM VMX Non-Root Operation . 1-9
1.4.1 SEAM VMX Non-Root Execution Controls . 1-10
1.4.2 Guest Physical Address Translation. 1-10
1.4.3 Linear Address Translation. 1-11
1.4.4 Memory Typing. 1-11
1.4.5 Caching Translations Information . 1-11
1.4.6 Virtual Interrupt Delivery . 1-11
1.5 Operation Outside SEAM . 1-12

CHAPTER 2
VMX INSTRUCTION SET EXTENSIONS
2.1 Conventions. 2-1
2.2 VM Instruction Error Numbers . 2-2
2.3 Instruction Set Reference. 2-2

SEAMCALL — Call to SEAM VMX Root Operation. .2-3
SEAMOPS — Invoke SEAM Operations .2-5
SEAMRET — Return to Legacy VMX Root Operation . 2-11
TDCALL — Call to VM Monitor from TD Guest. 2-13
VMRESUME/VMLAUNCH — Resume/Launch Virtual Machine . 2-14

CHAPTER 3
INTEL® SGX INSTRUCTION SET EXTENSIONS
3.1 EVERIFYREPORT2 Leaf Description. 3-1
Ref. # 343754-002 v

vi Ref. # 343754-002

TABLES
PAGE
1-1 IA32_SEAMRR_PHYS_BASE MSR and IA32_SEAMRR_PHYS_MASK MSR Layout . 1-3
1-2 IA32_SGX_SVN_STATUS MSR Layout . 1-5
1-3 MKTME Programming Interface Extensions . 1-6
1-4 Encoding KeyID in Physical Address. 1-7
1-5 MSR_INTR_PENDING MSR Layout. 1-9
1-6 Encoding KeyID in Physical Address. 1-12
2-1 VM Instruction Error Numbers . 2-2
2-2 TEE_TCB_SVN. 2-6
2-3 TEE_TCB_INFO Structure . 2-6
2-4 REPORTTYPE. 2-7
2-5 REPORTMACSTRUCT. 2-7
2-6 SEAMREPORT . 2-7
2-7 SEAMREPORT Operands . 2-8
2-8 SEAMREPORT Memory Operands . 2-8
3-1 EVERIFYREPORT2 Instruction Layout . 3-1
3-2 EVERIFYREPORT2 Memory Parameter Information . 3-1
3-3 Temp Variables in EVERIFYREPORT2 Operational Flow . 3-1
Ref. # 343754-002 vii

viii Ref. # 343754-002

FIGURES
PAGE
Figure 1-1. Intel® Trust Domain Extensions Components . 1-1
Figure 1-2. SEAM Range Register Details. 1-2
Figure 1-3. VMX and SEAM Transitions. 1-3
Ref. # 343754-002 ix

x Ref. # 343754-002

SECURE ARBITRATION MODE (SEAM)
CHAPTER 1
SECURE ARBITRATION MODE (SEAM)

1.1 OVERVIEW
Secure Arbitration Mode (SEAM) is an extension to the Virtual Machines Extension (VMX) architecture to define
a new, VMX root operation called SEAM VMX root and a new VMX non-root operation called SEAM VMX non-root.
Collectively, the SEAM VMX root and SEAM VMX non-root execution modes are called operation in SEAM.
SEAM VMX root operation is designed to host a CPU-attested, software module called the Intel® Trust Domain
Extensions (Intel® TDX) module to manage virtual machine (VM) guests called Trust Domains (TD). The Intel
TDX module implements the functions to build, tear down, and start execution of TD VMs. The VMM provides
memory resources to build the TD, and the Virtual Machine Monitor (VMM) helps schedule the TD executions using
the API provided by the Intel TDX module.
SEAM VMX root operation is designed to additionally host a CPU-attested, software module called the Intel
Persistent SEAMLDR (Intel P-SEAMLDR) module to load and update the Intel TDX module.
Virtual machines launched/resumed from SEAM VMX root operation are TDs, and VMs launched/resumed from
legacy VMX root operation are legacy VMs. Intel TDX modules use the SEAM instruction set extensions to help
protect the confidentiality and integrity of TD memory contents and CPU state from all other software, including the
hosting VMM, unless explicitly shared by the TD itself.

The Intel TDX module and the Intel P-SEAMLDR module, that execute in SEAM VMX-root operation, execute out of
memory defined by the SEAM range register (SEAMRR). The reserved range of memory specified using the SEAM
range register (SEAMRR) is configured by the platform owner and programmed by the BIOS.

Figure 1-1. Intel® Trust Domain Extensions Components

VM

VMM

VMM Enforced Access Controls Intel® TDX Module Enforced Access Controls

SEAMCALL

VM VM TD VMTD VM TD VM

SEAMRET

SEAM Range Register

Module Range

Intel® TDX Module

Persistent SEAMLDR Range

Intel Persistent SEAMLDR Module
SEAMCALL

SEAMRET
Ref. # 343754-002 1-1

SECURE ARBITRATION MODE (SEAM)
The SEAMRR range is partitioned into two sub-ranges by the processor:
• MODULE_RANGE
• P_SEAMLDR_RANGE
The MODULE_RANGE is used to install an Intel TDX-module that provides functions to build and manage TD VMs.
The P_SEAMLDR_RANGE is used to install an Intel Persistent SEAM loader (P-SEAMLDR) module that is used to
measure, verify, and install the Intel TDX-module into the MODULE_RANGE. By design, access to the P-SEAMLDR
range is restricted to the P-SEAMLDR module.
Intel provides a non-persistent SEAMLDR (NP-SEAMLDR) ACM to install an Intel P-SEAMLDR module, in the
P_SEAMLDR_RANGE of SEAMRR.
The Intel TDX-module in the MODULE_RANGE is loaded by the P-SEAMLDR.
The SEAM range register details are shown in Figure 1-2.

The processor transitions from legacy VMX-root operation to SEAM VMX-root operation in response to a SEAMCALL
instruction invoked by the VMM. The processor transitions out of SEAM VMX-root operation to legacy VMX-root
operation in response to a SEAMRET instruction.
The RAX register is an input parameter to the SEAMCALL instruction. The instruction uses bit 63 of the RAX register
to determine if the SEAMCALL should transition to software executing in the MODULE_RANGE (if bit 63 is 0) or the
P_SEAMLDR_RANGE (if bit 63 is 1). Only one logical processor in the platform can execute from the
P_SEAMLDR_RANGE at a time, and this is enforced by the SEAMCALL instruction. A SEAMCALL instruction that
performs a transfer to the P_SEAMLDR enables access to the P_SEAMLDR_RANGE on that logical processor. A
SEAMRET instruction invoked by the P_SEAMLDR closes access to the P_SEAMLDR_RANGE and transitions to the
legacy VMX root operation.
The VMRESUME/VMLAUNCH instructions are used to help transition to the SEAM VMX non-root operation from
SEAM VMX root operation. VM exits are designed to then exit from the SEAM VMX non-root transition to SEAM VMX
root operation. The transitions are shown in Figure 1-3.

Figure 1-2. SEAM Range Register Details

SEAMRR.Base

Install Intel P-SEAMLDR

NP-SEAMLDR (ACM)

P-SEAMLDR Image

Intel® TDX Module
(Installed by P-SEAMLDR)

Install Intel TDX Module
(At boot and at runtime)

 Intel P-SEAMLDR
(Installed by NP-SEAMLDR)

P_SEAMLDR_RR.Base

SEAMRR.Limit

P_SEAMLDR_RR.Limit

MODULE_RANGE P_SEAMLDR_RANGE
1-2 Ref. # 343754-002

SECURE ARBITRATION MODE (SEAM)
1.2 INTEL® TDX MODULE AND INTEL P-SEAMLDR MODULE
The Intel TDX module and the Intel P-SEAMLDR module execute out of a range of memory defined using a SEAM
range register (SEAMRR) interface. By design, access to this range is restricted to SEAM VMX root operation. Code
fetches outside of SEAMRR when in SEAM VMX root operation are meant to be disallowed and lead to an unbreak-
able shutdown.
If the SEAMRR bit (bit 15) of the IA32_MTRRCAP MSR is set, the processor supports the SEAMRR interface to
restrict access to a specified memory address range used by the Intel TDX module when executing in SEAM VMX
root operation. The SEAM range registers consist of a pair of MSRs. The IA32_SEAMRR_PHYS_BASE MSR is
intended to define the 32-MB aligned base address for the SEAM memory range. The IA32_SEAMRR_PHYS_MASK
MSR contains a mask that helps determine the address range protected by the SEAMRR interface. The smallest
address range that should be specified by the SEAM range registers is 32 MB. The intention is that the MSRs may
be written only by boot BIOS and before the lock bit has been set; an attempt to write them outside of boot BIOS
or after the lock bit has been set would cause a general-protection exception.

Figure 1-3. VMX and SEAM Transitions

Table 1-1. IA32_SEAMRR_PHYS_BASE MSR and IA32_SEAMRR_PHYS_MASK MSR Layout

Register Address
Register Name / Bit Fields Scope Bit Description Comment

Hex Dec

1400H 5120 IA32_SEAMRR_PHYS_BASE Core Secure Arbitration Mode Range
Register - Physical Base Control
Register

If IA32_MTRRCAP. SEAMRR
[15] = 1.

2:0 Reserved

3 When set, indicates the range is
configured.

24:4 Reserved

(MAXPHYADDR-1):25 SEAMRR base address.

63: MAXPHYADDR Reserved

VM Entry
VM Exit

SEAM, legacy VMX, SMM

SMM Guest
VMX Non-Root

SMM Transfer Monitor
VMX Root

Dual monitor treatment not
activated

Out of VMX

SMM Guest Entry
SMM Guest Exit
(SMI, VMCALL)

Dual monitor treatment activated
Dual monitor treatment not activated

VMM
Legacy VMX Root

VM
VMX Non-Root

Default
Out of VMX

VMXON VMXOFF

VM Entry
VM Exit

SEAM Mode

SEAM
VMX Non-Root

SEAM
VMX Root

VM Exit
(in SEAM
mode)VM Entry

VM Exit
(SMI)

SEAMRET

SEAMCALL

Memory and state opaque to VMM
SEAM VMX root in TCB of SEAM VMX non-root
Ref. # 343754-002 1-3

SECURE ARBITRATION MODE (SEAM)
Starting at offset 4K from the SEAMRR base, a 4K page per addressable logical processor ID is used to host a SEAM
transfer VMCS structure used by the SEAMCALL instruction invoked with RAX[63] set to 0 to aid the transfer from
legacy VMX-root operation to SEAM VMX-root operation as a VM exit to the Intel TDX module. The SEAMRET
instruction uses this VMCS to aid transfer from the SEAM VMX- root operation back to legacy VMX-root operation as
a VM entry. The address of the SEAM transfer VMCS for a given, logical processor is IA32_SEAMRR_PHYS_BASE +
4096 + CPUID.B.0.EDX [31:0] * 4096.
In the P_SEAMLDR_RANGE, a 4K page is used to host a P-SEAMLDR transfer VMCS used by a SEAMCALL instruction
invoked with RAX[63] set to 1 to aid the transfer from legacy VMX-root operation to SEAM VMX-root operation as a
VM exit to the Intel P-SEAMLDR module. SEAMCALL with RAX[63] set to 1 is designed to allow only one logical
processor to VM exit to the Intel P-SEAMLDR module. The Intel P-SEAMLDR module uses the SEAMRET instruction
to transition to legacy VMX-root operation as a VM entry using the P-SEAMLDR transfer VMCS.
Intel provides a non-persistent Secure Arbitration Mode Loader (NP-SEAMLDR) ACM to help initialize the SEAM
range, set up the P-SEAMLDR transfer VMCS structure, and load the Intel P-SEAMLDR module into the
P_SEAMLDR_RANGE range of memory. The OS can launch the NP-SEAMLDR ACM using the GETSEC[ENTERACCS]
instruction if the SEAMRR range enable bit (bit 11) of IA32_SEAMRR_PHYS_MASK MSR is 1.
The P-SEAMLDR module may be invoked by the VMM to load/update the Intel TDX module in the MODULE_RANGE
of SEAMRR. The P-SEAMLDR module helps to initialize the SEAM transfer VMCS structures used for transfer to the
Intel TDX module and load/update the Intel TDX module in the MODULE_RANGE of the SEAMRR. The P-SEAMLDR
aims to measure and verify the Intel TDX module against its signature structure and record its security version
number (SVN), measurements, and identity into CPU registers that are accessible only to the P-SEAMLDR module.
The SEAMCALL instruction invoked with RAX[63] set to 0 is meant to return VMFailInvalid if invoked when the Intel
TDX module is not ready for execution. This may be due to i) either the P-SEAMLDR not having been invoked to
successfully initialize and load the Intel TDX module, ii) the Intel TDX module is being updated, or iii) the Intel TDX
module is not ready due to entering a shutdown when in SEAM.
The SEAMCALL instruction invoked with RAX[63] set to 1 is meant to return VMFailInvalid if invoked when the Intel
P-SEAMLDR module is not ready for execution. This may be due to i) either the NP-SEAMLDR not having been
invoked to successfully initialize and load the Intel P-SEAMLDR module, ii) P-SEAMLDR is itself being updated, or iii)
the Intel P-SEAMLDR module is not ready due to entering a shutdown when in SEAM.
The SVN of the NP-SEAMLDR ACM itself is reported in the IA32_SGX_SVN_STATUS MSR. OS/VMMs that launch an
ACM such as SINIT or SEAMLDR are expected to read the IA32_SGX_SVN_STATUS MSR to determine whether the
ACM can be launched or if a new ACM is needed.
• If either the Intel® Software-Guard-Extensions (Intel® SGX) SVN of the ACM value in the ACM's header is

greater than the value reported by IA32_SGX_SVN_STATUS or the lock bit in the IA32_SGX_SVN_STATUS is
not set, then the OS/VMM can launch the ACM.

• If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS MSR is
greater than the Intel SGX SVN value in the ACM's header, and if bit 0 of the IA32_SGX_SVN_STATUS MSR is
1, then the OS/VMM would not launch that version of the ACM. It would obtain an updated version of the ACM
either from the BIOS or from an external resource.

1401H 5121 IA32_SEAMRR_PHYS_MASK Core Secure Arbitration Mode Range
Register - Physical Mask Control
Register

If IA32_MTRRCAP. SEAMRR
[15] = 1.

9:0 Reserved

10 Lock bit for the SEAMRR.

11 Enable bit for the SEAMRR.

(MAXPHYADDR-1):25 SEAMRR mask bits.

63: MAXPHYADDR Reserved

Table 1-1. IA32_SEAMRR_PHYS_BASE MSR and IA32_SEAMRR_PHYS_MASK MSR Layout (Continued)

Register Address
Register Name / Bit Fields Scope Bit Description Comment

Hex Dec
1-4 Ref. # 343754-002

SECURE ARBITRATION MODE (SEAM)
However, OSVs/VMMs are strongly advised to update their version of the ACM any time they detect that the Intel
SGX SVN of the ACM carried by the OS/VMM is lower than that reported by the IA32_SGX_SVN_STATUS MSR,
irrespective of the setting of the lock bit.

1.3 SEAM VMX ROOT OPERATION
The Intel TDX module uses the SEAM VMX root operation to help arbitrate resource allocation to the TD VMs and
transition to SEAM VMX non-root operations to execute the TD VMs. The Intel TDX module uses Multi-Key, Total-
Memory-Encryption (MKTME) technology to aid protection of the confidentiality and integrity of the TD VMs' private
memory. The Intel® Architecture Memory Encryption Technologies Specification is specified at: https://soft-
ware.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-
753926.pdf.
Leaving VMX operation using VMXOFF or invoking SMM-monitor using VMCALL instructions is not supported and
would result in a General-Protection fault (#GP(0)) in SEAM VMX root operation. This section discusses the SEAM
VMX root operation differences compared to the legacy VMX root operation.
If a logical processor enters a shutdown state when in SEAM VMX root or non-root operation, the processor is
designed to mark the Intel TDX module and Intel P-SEAMLDR module states as not loaded prior to entering shut-
down, such that all subsequent SEAMCALL invocations on any logical processor return VMFailInvalid.

Table 1-2. IA32_SGX_SVN_STATUS MSR Layout

Register Address
Register Name / Bit Fields Scope Bit Description Comment

Hex Dec

400H 1280 IA32_SGX_SVN_STATUS Core Status and SVN Threshold of Intel
SGX Support for ACM (RO)

If CPUID.(EAX=07H,

ECX=0H): EBX[2] = 1.

0 Lock If 1, indicates that a non-faulting
Intel SGX instruction or
SEAMOPS instruction has been
executed. Consequently,
launching a properly signed ACM
but with Intel SGX SVN value
less than the BIOS specified
Intel SGX SVN threshold would
lead to an Intel TXT shutdown.

If 0, indicates that the processor
will allow a properly signed ACM
to launch irrespective of the
Intel SGX SVN value of the ACM.

15:1 Reserved

23:16 SGX_SVN_SINIT If CPUID. (EAX=01H, ECX=0H):
ECX[SMX] =1, this field reflects
the expected threshold of Intel
SGX SVN for the SINIT ACM.

If CPUID. (EAX=01H, ECX=0H):
ECX[SMX] =0, this field is
reserved (0).

63:56 SGX_SVN_SEAMLDR This field reflects the expected
threshold of Intel SGX SVN for
the NP-SEAMLDR ACM.

On parts that do not support
SEAM operation, this field is
reserved (0).
Ref. # 343754-002 1-5

https://software.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-753926.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-753926.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-753926.pdf

SECURE ARBITRATION MODE (SEAM)
1.3.1 TDX Private KeyID
The TD VM private memory contents are meant to be encrypted and integrity protected using the MKTME tech-
nology by associating each TD VM with a different MKTME key identifier (KeyID). Protecting the confidentiality and
integrity of the TD memory can require that the key associated with a KeyID assigned to a TD cannot be tampered
by untrusted software. Likewise, untrusted software should not be allowed to read or write memory using the
KeyID assigned to a TD.
Intel Trust Domain Extensions enable reservation of a configurable number of KeyIDs as private KeyIDs that can be
used only in SEAM.
MKTME on an SOC that supports SEAM might support an integrity protected, memory encryption mode. When
using keys with integrity enabled, the MKTME associates a message authentication code (MAC) with each cache
line. By design, when reading a cache line using a KeyID with integrity enabled, if the MAC stored in the metadata
does not match the MAC regenerated by the MKTME, then the cache line is marked poisoned to prevent the data
from being consumed. Integrity protected memory must be initialized before being read, and such initialization
must be performed using 64-bytes direct-store with 64-byte write atomicity using the MOVDIR64B instruction.
The maximum number of KeyIDs supported by the MKTME and the maximum number of upper physical address
bits that can be configured to be used as KeyIDs are enumerated by the IA32_TME_CAPABILITY MSR. As part of
activating the MKTME, BIOS is meant to use the IA32_TME_ACTIVATE MSR to configure the number of upper phys-
ical address bits to be used as KeyIDs and thereby activate the number of KeyIDs that are usable on that platform.
The partitioning of this activated number of KeyIDs into shared and TDX private KeyIDs can also be performed by
the boot BIOS using the IA32_TME_ACTIVATE MSR. The IA32_MKTME_KEYID_PARTITIONING MSR enables
reading the KeyID partitioning done by the BIOS. The MKTME programming interface extensions are described in
Table 1-3.

Table 1-3. MKTME Programming Interface Extensions

Register Address
Register Name / Bit Fields Scope Bit Description Comment

Hex Dec

87H 135 IA32_MKTME_KEYID_PARTI
TIONING

Package Multi-Key Total Memory Encryption
(MKTME) KeyID Partitioning
Enumeration MSR

31:0 NUM_MKTME_KIDS

Total Number of activated MKTME
KeyIDs. If the LOCK field in
IA32_TME_ACTIVATE is 0, this field
reports 0. MKTME KeyIDs span the
KID range 1 through
NUM_MKTME_KIDS.

63:32 NUM_TDX_PRIV_KIDS - Number of
TDX Private KeyIDs

If the LOCK field in
IA32_TME_ACTIVATE is 0, this field
reports 0. TDX private KeyIDs span
the range (NUM_MKTME_KIDS + 1)
through (NUM_MKTME_KIDS +
NUM_TDX_PRIV_KIDS).

981H 2433 IA32_TME_CAPABILITY Package Total Memory Encryption (TME) /
Multi-Key Total Memory Encryption
(MKTME) Capability Reporting MSR

0 When set to 1, AES-XTS 128-bit
encryption algorithm supported.

1 When set to 1, AES-XTS 128-bit
encryption with at least 28-bits of
integrity algorithm supported.
1-6 Ref. # 343754-002

SECURE ARBITRATION MODE (SEAM)
The keys for the MKTME KeyID are programmed using the PCONFIG instruction. The PCONFIG instruction is
designed to allow key programming for TDX private KeyID only in SEAM.
When MKTME is activated, the plan intends the upper bits of platform physical address (starting with the highest
order bit available as enumerated by the CPUID MAXPA info) be repurposed for usage as a KeyID. When the KeyID
space is partitioned, the TDX_RESERVED_KEYID_BITS number of bits, starting with the highest order bit of the
physical address, is meant to be used to encode TDX private KeyID, and, if any of these bits are set, then the KeyID
specified would be a TDX private KeyID.

MKTME usage for TD memory protection might require the Intel TDX module to write-back and invalidate caches
for certain, maintenance operations. For some maintenance operations, the Intel TDX module might need to write-
back the caches but not require invalidation of the cache contents. The WBINVD/WBNOINVD instructions may be
used by the Intel TDX module to help perform these operations.

63:2 See Intel® Architecture Memory
Encryption Technologies
Specification.

982H 2434 IA32_TME_ACTIVATE Package Total Memory Encryption (TME) /
Multi-Key Total Memory Encryption
(MKTME) Activation MSR

32:0 See Intel® Architecture Memory
Encryption Technologies
Specification.

35:32 MK_TME_KEYID_BITS

The number of KeyID bits to allocate
to MKTME usage. Like enumeration,
this is an encoded value. Writing a
value greater than
MK_TME_MAX_KEYID_BITS will
result in #GP(0). Writing a non-zero
value to this field will #GP(0) if bit 1
of EAX (TME Enable) is not also set
to 1, as TME must be enabled to use
MKTME.

39:36 TDX_RESERVED_KEYID_BITS

The number of physical address bits
starting at (MAXPHYADDR - 1) that
are reserved for Intel TDX use to
encode TDX private KeyID.

The value in this field cannot
exceed the value in bits 35:32
of this MSR.

Table 1-4. Encoding KeyID in Physical Address

PA
Bits

63: MAXPHYADDR
(MAXPHYADDR - 1):
(MAXPHYADDR - L)1

NOTES:

1. L represents TDX_RESERVED_KEYID_BITS.

(MAXPHYADDR - L - 1):
(MAXPHYADDR - N)2

2. N represents MK_TME_KEYID_BITS.

(MAXPHYADDR - N - 1): 0

400H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of
Intel SGX Support for ACM (RO)

If CPUID.(EAX=07H,

ECX=0H): EBX[2] = 1.

Table 1-3. MKTME Programming Interface Extensions (Continued)

Register Address
Register Name / Bit Fields Scope Bit Description Comment

Hex Dec
Ref. # 343754-002 1-7

SECURE ARBITRATION MODE (SEAM)
The processor can provide an alternate, cache management interface to SEAM VMX root operation through
MSR_WBINVDP and MSR_WBNOINVDP. WRMSR to MSR_WBINVDP and MSR_WBNOINVDP can do write-back of
one cache sub-block specified by software in EDX: EAX. The WRMSR to MSR_WBINVDP can additionally invalidate
the specified, cache sub-block. The maximum of cache sub-blocks (NUM_CACHE_SUB_BLOCKS) is meant to be
read by software using RDMSR to MSR_WBINVDP or MSR_WBNOINVDP. Software should invoke
MSR_WBINVDP/MSR_WBNOINVDP with EDX: EAX at least once with a sub-block number between 0 and
(MAX_CACHE_SUB_BLOCKS - 1) to operate on the entire cache. Specifying an invalid cache sub-block number, i.e.,
a number greater than or equal to MAX_CACHE_SUB_BLOCKS, can cause a General-Protection fault (#GP(0)). The
operation of these WRMSR and RDMSR to MSR_WBINVDP and MSR_WBNOINVDP is designed as follows:

1.3.2 Memory Typing
In SEAM VMX root operation, the determination of memory type for an access is designed as follows:
• If CR0.CD is 1, then the effective memory type is UC.
• If CR0.CD is 0, then the effective memory type depends on the physical address that is accessed and the KeyID

used for the access.

— If the access is to the SEAMRR, then the MTRRs do not contribute to the memory typing, and the effective,
memory type for the access is determined by the PAT alone.

— If the access is to physical memory outside SEAMRR and the access uses a TDX private KeyID, then the
MTRRs do not contribute to the memory typing. The memory type is determined by the PAT alone.

— If the access is to physical memory outside SEAMRR and the access does not use a TDX private KeyID, then
the memory type for the access is determine based on the MTRR matching the physical address and the
PAT.

Special operations that explicitly force a memory type (e.g., fast strings, MOVDIR64, etc.) continue to operate with
their special memory type as defined by those instructions.

1.3.3 Caching Translation Information
The address translation caching architecture is augmented with an in-SEAM state to support SEAM. When in SEAM
VMX root operation, in-SEAM is 1. In SEAM VMX root operation, a logical processor might cache and use cached
mappings for linear addresses derived from the paging structure referenced (directly or indirectly) by the current
value of CR3 and associate them with:
• Current VPID.
• Current PCID (non-global translations) or any PCID (global translations).

IF RDMSR

 IF inSEAM==0 THEN #GP(0);

 IF invoked from VMX load/store list THEN #GP(0);

 EDX:EAX = MAX_CACHE_SUB_BLOCKS;

ENDIF

IF WRMSR

 IF inSEAM==0 THEN #GP(0);

 IF invoked from VMX load/store list THEN #GP(0);

 IF EDX:EAX >= MAX_CACHE_SUB_BLOCKS THEN #GP(0);

 Flush cache sub-block indexed by EDX:EAX

 IF ECX == MSR_WBINVDP THEN Invalidate cache sub-block indexed by EDX:EAX;

ENDIF
1-8 Ref. # 343754-002

SECURE ARBITRATION MODE (SEAM)
• Current In-SEAM.

1.3.4 Event Handling
On transition to SEAM VMX root operation, the processor can inhibit NMI and SMI. While inhibited, if these events
occur, then they are tailored to stay pending and be delivered when the inhibit state is removed. NMI and external
interrupts can be uninhibited in SEAM VMX-root operation. In SEAM VMX-root operation, MSR_INTR_PENDING can
be read to help determine status of any pending events.
On transition to SEAM VMX non-root operation using a VM entry, NMI and INTR inhibit states are, by design,
updated based on the configuration of the TD VMCS used to perform the VM entry.
SMIs that are incident to SEAM VMX non-root operation or were pending from prior to transition to SEAM VMX non-
root operation can cause a VM to exit to the SEAM root-mode operation with the exit reason set to “IO SMI” or
“Other SMI”. The exit qualification bit 0 is meant to be set to 1, if the SMI is a machine check initiated SMI (MSMI).
The SMI would then remain pending following the VM exit.
On transition to legacy VMX root operation using SEAMRET, the NMI and SMI inhibit state can be restored to the
inhibit state at the time of the previous SEAMCALL and any pending NMI/SMI would be delivered if not inhibited.
The layout of the MSR_INTR_PENDING is described in Table 1-5.

The reporting of these pending events in MSR_INTR_PENDING is designed not to be affected by:
• EFLAGS.IF.
• NMI blocking.
• SEAM blocking of SMI, or NMI.
• SMI inhibited by SENTER.
• MOV-SS/POP-SS blocking.
• STI blocking.

1.4 SEAM VMX NON-ROOT OPERATION
The TD VMs execute in SEAM VMX non-root operation. This section discusses the SEAM VMX non-root operation
differences compared to the legacy VMX non-root operation.

Table 1-5. MSR_INTR_PENDING MSR Layout

Register Address
Register Name / Bit Fields Scope Bit Description Comment

Hex Dec

981H 2433 MSR_INTR_PENDING Thread Determine if there are pending
interrupts or events. (RO)

Not allowed in VMX MSR store
list.

Not readable outside SEAM
VMX-root operation.

0 INTR pending.

1 NMI pending.

2 SMI pending.

3 Other/unspecified event pending.

4 Other/unspecified event pending.

63:5 Reserved
Ref. # 343754-002 1-9

SECURE ARBITRATION MODE (SEAM)
1.4.1 SEAM VMX Non-Root Execution Controls
Each TD VM is associated with a VMCS that manages transitions into and out of SEAM VMX non-root operation (VM
entries and VM exits) as well as processor behavior in SEAM VMX non-root operation.
When in SEAM non-root operation, the processor uses the following, additional controls to help accomplish its aim:

1. Shared EPT Pointer (Shared-EPTP): A 64-bit execution control field (encoding pair 203CH/203DH) to specify
the Shared-EPT pointer. In SEAM VMX non-root operation, the plan dictates two EPTs be active: the private EPT
specified using the EPTP field of the VMCS and a Shared-EPT specified using the Shared-EPTP field of the VMCS.

a. Bits 11:0 are reserved.

b. Bits (MAXPHYADDR - 1):12 contain bits (MAXPHYADDR - 1):12 of the physical address of the 4-Kbyte
aligned EPT PML4/PML5 table.

c. Bits 63:MAXPHYADDR are reserved.

2. TD Key identifier (TD-KeyID) (encoding 4026H): A 32-bit execution control field to help specify the TD
assigned, MKTME KeyID. The processor is meant to use this TD-KeyID to access EPT paging structures
referenced by EPTP as the physical addresses obtained as a result of translation through the EPT referenced by
the EPTP.

3. Guest Physical Address Width (GPAW): GPAW execution control (bit position 5) in the tertiary, processor-based
execution controls (encoding 2034H) that, along with the EPT walk levels (4 or 5 level), is used to assist in
determining the GPA width and thus a SHARED bit position in the GPA. The GPA space of a TD is partitioned into
two halves: a shared GPA range and a private GPA range. The GPA range where a SHARED bit is 0 is TD private
memory, and the EPT determined by the EPTP is used to help translate the GPA to a physical address. GPA
loaded into CR3, PDPTRs, and HLAT root pointer are always translated using the EPTP. The processor uses the
TD-KeyID to aid gaining access to the physical address as a result of translation of private GPA. The GPA range
where a SHARED bit is 1 is TD shared memory, and the EPT determined by Shared-EPTP is used to help
translate the GPA to a physical address. The processor uses the KeyID determined from the Shared EPT to aid
gaining access to the physical address as a result of translation of shared GPA.

a. When 4-level EPT is active, the SHARED bit position would always be bit 47.

b. When 5-level EPT is active, the SHARED bit position would be bit 47 if GPAW is 0. Otherwise, else it would
be bit 51.

The tertiary, processor-based execution control is designed to be activated by bit 17 of the primary, processor-
based execution control, and the IA32_VMX_PROCBASED_CTLS3 MSR (index 492H) would then indicate the bits
that can be set to 1 in the tertiary, processor-based execution control field in the VMCS. Bit position 5 of
IA32_VMX_PROCBASED_CTLS3 MSR aims to report if the GPAW execution control in tertiary, processor-based
execution controls field of the VMCS can be set to 1. When the GPAW execution control can be set to 1, the
processor also supports programming the Shared-EPTP and TD-KeyID execution controls in the VMCS.
These VMCS fields would be ignored by VM entry when not in SEAM VMX root operation.

1.4.2 Guest Physical Address Translation
Transition to SEAM VMX non-root operation is formatted to require Extended Page Tables (EPT) to be enabled. In
SEAM VMX non-root operation, there should be two EPTs active: the private EPT specified using the EPTP field of the
VMCS and a shared EPT specified using the Shared-EPTP field of the VMCS.
When translating a GPA using the shared EPT, an EPT misconfiguration can occur if the entry is present and the
physical address bits in the range (MAXPHYADDR-1) to (MAXPHYADDR-TDX_RESERVED_KEYID_BITS) are set, i.e.,
if configured with a TDX private KeyID.
If the CPU's maximum physical-address width (MAXPA) is 52 and the guest physical address width is configured to
be 48, accesses with GPA bits 51:48 not all being 0 can cause an EPT-violation, where such EPT-violations are not
mutated to #VE, even if the “EPT-violations #VE” execution control is 1.
If the CPU's physical-address width (MAXPA) is less than 48 and the SHARED bit is configured to be in bit position
47, GPA bit 47 would be reserved, and GPA bits 46:MAXPA would be reserved. On such CPUs, setting bits 51:48 or
bits 46:MAXPA in any paging structure can cause a reserved bit page fault on access.
1-10 Ref. # 343754-002

SECURE ARBITRATION MODE (SEAM)
1.4.3 Linear Address Translation
In SEAM VMX non-root operation, all paging structures used to translate linear addresses to GPA should be in
private GPA space. Setting a SHARED bit to 1 in CR3 or paging structures that reference another paging structure
can cause a reserved bit page fault exception.
In SEAM VMX non-root operation, attempting to execute out of a page in TD shared memory, i.e., page mapped
with a SHARED bit set to 1, can cause a page fault exception.

1.4.4 Memory Typing
For translated, guest physical accesses, the memory type should normally be determined based on CR0.CD, PAT
memory type, and EPT memory type. The EPT memory type provided by the EPT (shared or private) helps to
perform the translation.
Special operations that explicitly force a memory type (e.g., fast strings, MOVDIR64, etc.) are intended to continue
to operate with their respective, special memory type.
The memory type for accessing VMCS linked data structures using a TDX private KeyID (MSR bitmaps, VAPIC page,
etc.) would be UC if CR0.CD is 1. Otherwise, it would be WB.

1.4.5 Caching Translations Information
When in SEAM VMX non-root operations, EPT is intended to always be in use. Address translation caching architec-
ture is augmented with an additional in-SEAM state to support SEAM. When in SEAM VMX root or VMX non-root
operation, in-SEAM would be 1 (otherwise, it would be 0) and augment the caching architecture as follows:
• For accesses using linear addresses, the processor can create combined mappings. Combined mappings would

be derived from the EPT paging structures referenced (directly or indirectly) by the current EP4TA (when 4-
level EPT is active) or current EP5TA (when 5-level EPT is active). The EPT4TA/EP5TA are from the EPTP field of
the VMCS. If CR0.PG = 1, the combined mappings can also be derived from the paging structures referenced
(directly or indirectly) by the current value of CR3. No combined, paging-structure-cache entries would be
created if CR0.PG = 0. The combined mappings are associated with:

— Current VPID.

— Current PCID (non-global translations) or any PCID (global translations).

— Current EP4TA (when 4-level EPT is active) or current EP5TA (when 5-level EPT is active) from the EPTP
field of the VMCS.

— Current In-SEAM.
• For guest-physical address accesses, a processor can use guest-physical mappings derived from the EPT

paging structures referenced (directly or indirectly) by bits 51:12 of the current EPTP or current Shared-EPTP,
depending on the EPT used to perform the translation. Newly created, guest-physical mappings are associated
with current EP4TA or current EP5TA from the EPTP field of the VMCS.

Combined and guest-physical mappings obtained through EPT referenced by Shared EPTP are also associated with
the EP4TA/EP5TA from the EPTP field of the VMCS. To invalidate guest-physical or combined mappings created in
SEAM, software (including the VMM executing outside SEAM operation) would use the EPTP (not Shared-EPTP) with
the KeyID fields of the address set to 0.
INVVPID or INVPCID are designed to invalidate combined mappings created in SEAM only when invoked in SEAM.

1.4.6 Virtual Interrupt Delivery
Virtual interrupt delivery in SEAM VMX non-root operation aims to ignore bits corresponding to vectors 0 through
30 in the virtual interrupt-request register (VIRR) in the virtual-APIC page when computing the requesting, virtual
interrupt (RVI). These vectors are formatted not to be delivered as virtual interrupts through virtual interrupt
delivery.
Ref. # 343754-002 1-11

SECURE ARBITRATION MODE (SEAM)
1.5 OPERATION OUTSIDE SEAM
The physical address bits reserved for encoding TDX private KeyID are meant to be treated as reserved bits when
not in SEAM operation.
When translating a linear address outside SEAM, if any paging structure entry has bits reserved for TDX private
KeyID encoding in the physical address set, then the processor helps generate a reserved bit page fault exception.
When translating a guest physical address outside SEAM, if any EPT structure entry has bits reserved for TDX
private KeyID encoding in the physical address set, then the processor helps generate an EPT misconfiguration.
Instructions that accept physical address operands when invoked with physical addresses that set bits reserved for
encoding TDX private KeyID are designed to generate a failure or exception as described in Table 1-6.

Enabling Intel® Processor Trace, by setting TraceEn to 1 in the IA32_RTIT_CTL MSR, causes an operational ToPA
error if the IA32_RTIT_OUTPUT_BASE MSR was a) programmed with a physical address with TDX private KeyID or
b) was programmed with a GPA whose translation results in a physical address with TDX private KeyID.
PCONFIG invoked outside SEAM can fail with error code INVALID_KEYID (encoding 3; KeyID not valid) if the KeyID
operand is a private KeyID.

Table 1-6. Encoding KeyID in Physical Address

Instruction Behavior

VMXON VMFailInvalid: the physical address sets reserved bits.

VMPTRLD VMFail with reason “VMPTRLD with invalid physical address”.

VMCLEAR VMFail with reason “VMCLEAR with invalid physical address”.

VMLAUNCH

VMRESUME

Treat any VMCS linked physical address with bits reserved for encoding TDX private
KeyID set, i.e., specifying a TDX private KeyID as invalid. The treatment is like
programming these fields with a physical address with bits set beyond the maximum
physical address width of the processor. Examples of such VMCS fields are MSR bitmap
pointer, PML buffer, VAPIC page, etc.

INVEPT VMFail with reason “Invalid operand to INVEPT/INVVPID”.

MOV to CR3 General Protection Fault (#GP(0)).

WRMSR Programming control registers and MSRs outside SEAM with physical addresses that have
bits reserved for encoding TDX private KeyID set to 1 are treated as errors and cause a
#GP(0) exception. Examples of such MSRs and CRs include:

• IA32_APIC_BASE.
• MTRR, SMRR, and PRMRR base and mask registers.
• IA32_HW_FEEDBACK_PTR.
• IA32_TME_EXCLUDE_BASE.
1-12 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
CHAPTER 2
VMX INSTRUCTION SET EXTENSIONS

Instructions described in this document follow the general documentation convention established in Intel® 64 and
IA-32 Architectures Software Developer’s Manual Volume 2A. Additionally, some instructions use notation conven-
tions as described below.

2.1 CONVENTIONS
The operation sections for the VMX instructions in Section 2.3 use the pseudo-function VMexit, which indicates that
the logical processor performs a VM exit.
The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfailInvalid, and VMfailValid. These
pseudo-functions can signal instruction success or failure by setting or clearing bits in RFLAGS and, in some cases,
by writing the VM-instruction error field. The following pseudocode fragments detail these functions:

VMsucceed:
CF := 0;
PF := 0;
AF := 0;
ZF := 0;
SF := 0;
OF := 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid

THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF := 1;
PF := 0;
AF := 0;
ZF := 0;
SF := 0;
OF := 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF := 0;
PF := 0;
AF := 0;
ZF := 1;
SF := 0;
OF := 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 2.2, “VM Instruction Error Numbers”.
Ref. # 343754-002 2-1

VMX INSTRUCTION SET EXTENSIONS
2.2 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error number to indicate the source of
the error. Table 2-1 lists VM instruction error numbers.

2.3 INSTRUCTION SET REFERENCE

Table 2-1. VM Instruction Error Numbers
Error
Number Description

1 VMCALL executed in VMX root operation.

2 VMCLEAR with invalid physical address.

3 VMCLEAR with VMXON pointer.

4 VMLAUNCH with non-clear VMCS.

5 VMRESUME with non-launched VMCS.

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME).

7 VM entry with invalid control field(s)1,2.

NOTES:

1. VM-entry checks on control fields and host-state fields can be performed in any order. Thus, an indication by error number of one
cause does not imply that there are not also other errors. Different processors might give different error numbers for the same
VMCS.

2. Error number 7 is not designed to be used for VM entries that return from SMM that fail due to invalid VM-execution control fields in
the executive VMCS. Error number 25 is intended to be used for these cases.

8 VM entry with invalid host-state field(s)1.

9 VMPTRLD with invalid physical address.

10 VMPTRLD with VMXON pointer.

11 VMPTRLD with incorrect VMCS revision identifier.

12 VMREAD/VMWRITE from/to unsupported VMCS component.

13 VMWRITE to read-only VMCS component.

15 VMXON executed in VMX root operation.

16 VM entry with invalid executive-VMCS pointer1.

17 VM entry with non-launched executive VMCS1.

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to deactivate the dual-monitor treatment of
SMIs and SMM)1.

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment of SMIs and SMM).

20 VMCALL with invalid VM-exit control fields.

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-monitor treatment of SMIs and SMM).

23 VMXOFF under dual-monitor treatment of SMIs and SMM.

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-monitor treatment of SMIs and SMM).

25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to return from SMM)1,2.

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.
2-2 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
SEAMCALL — Call to SEAM VMX Root Operation

Instruction Operand Encoding

Description

The SEAMCALL instruction uses RAX register bit 63 to determine if the request is to transition to the Intel P-
SEAMLDR module (if bit 63 is 1) or the Intel TDX module (if bit 63 is 0).
When invoked in legacy VMX-root operation with RAX bit 63 set to 0, this instruction can cause a VM exit (exit
reason 4CH - SEAMCALL) to the Intel TDX module in SEAM VMX root operation using the SEAM transfer VMCS of
the logical processor on which the instruction was invoked. These SEAM transfer VMCS are in the module range of
the SEAMRR. Bit 29 of the exit reason (VM exit from VMX root operation) would be set to 1 on such VM exits.
When invoked in legacy VMX-root operation with RAX bit 63 set to 1, this instruction can cause a VM exit (exit
reason 4CH - SEAMCALL) to the Intel P-SEAMLDR module in SEAM VMX root operation using the SEAM transfer
VMCS in the P-SEAMLDR range. Only one logical processor in the system, at a time, can exit to the Intel P-
SEAMLDR module and the SEAMCALL instruction enforces this property through a mutex called
P_SEAMLDR_MUTEX.
When invoked in SEAM VMX non-root operation or legacy VMX non-root operation, this instruction can cause a VM
exit (exit reason 4CH - SEAMCALL). Bit 29 of the exit reason (VM exit from VMX root operation) will be set to 0 on
such VM exits.
SEAMCALL invokes an indirect branch control mechanism that establishes a barrier, preventing software that
executed before the SEAMCALL from controlling the predicted targets of indirect branches executed after
SEAMCALL on the same logical processor.

Operation

IF not in VMX operation or inSMM or inSEAM or ((IA32_EFER.LMA & CS.L) == 0)
 THEN #UD;
ELSIF in VMX non-root operation
 THEN VMexit(“basic reason” = SEAMCALL,
 “VM exit from VMX root operation” (bit 29) = 0);
ELSIF CPL > 0 or IA32_SEAMRR_MASK.VALID == 0 or “events blocking by MOV-SS”
 THEN #GP(0);
SEAM_CVP = (SEAMRR.BASE + 4K) + CPUID.B.0.EDX[31:0] * 4K
// Certain events/conditions that could affect security of SEAM could disable SEAM execution
IF
If RAX[63] == 0 AND “Intel TDX module not loaded or disabled”
 THEN VMfailInvalid
If RAX[63] == 1
 THEN
 Acquire P_SEAMLDR_MUTEX
 IF P_SEAMLDR_MUTEX acquisition failed
 THEN VMFailInvalid
 IF “Intel Persistent SEAMLDR module not loaded/or disabled”
 THEN
 Release P_SEAMLDR_MUTEX
 VMFailInvalid

Opcode/
Instruction

Op/
En

Description

66 0F 01 CF
SEAMCALL

ZO Call to SEAM VMX root operation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
Ref. # 343754-002 2-3

VMX INSTRUCTION SET EXTENSIONS
 FI;
 inP_SEAMLDR = 1
 SEAM_CVP = P_SEAMLDR_CVP
 FI;

RFLAGS.{CF, OF, SF, PF, AF, ZF} = 0

// Exiting from legacy VMX root operation
inSEAM = 1
SEAM_CVP.VMCS_link_pointer = current-VMCS
current-VMCS = SEAM_CVP
Save VMM state in current-VMCS based on its VM-exit controls
Save event inhibits in VMM interruptibility status - SMI inhibit, NMI inhibit
Load/force SEAM state based on VM-exit controls and host-state area
// Further details of the operation of the VM-exit appear in Chapter 27 “VM Exits” of Intel® 64 and IA-32 Architectures Software
// Developer's Manual Volume 3, System Programming Guide
Inhibit SMI and NMI
current-VMCS.exit_reason.basic_reason = SEAMCALL
current-VMCS.exit_reason.”VM exit from VMX root operation” (bit 29) = 1
current-VMCS.exit_qualification = 0

Flags Affected

The operation section uses the pseudo-functions VMsucceed and VMfailInvalid. See the operation section and
Section 2.1.

Protected Mode Exceptions

#UD The SEAMCALL instruction is not designed to be recognized in protected mode.

Real-Address Mode Exceptions

#UD The SEAMCALL instruction is not designed to be recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SEAMCALL instruction is not designed to be recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SEAMCALL instruction is not designed to be recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If CPL > 0.
 If IA32_SEAMRR_MASK.VALID is 0.
 If events are being blocked by MOV SS.
#UD If executed outside VMX operation.

If executed in SEAM VMX root operation.
 If logical processor is in SMM.

If IA32_VMX_PROCBASED_CTLS3[5] is 0.
2-4 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
SEAMOPS — Invoke SEAM Operations

Instruction Operand Encoding

Description

The SEAMOPS instruction is used to help execute SEAM-specific operations in SEAM VMX root operation.
The SEAMOPS instruction is designed to only be executed by privileged software running in SEAM VMX root opera-
tion and invoke leaf functions for performing the requested functionality. Software would select the leaf function by
setting the appropriate value in register RAX. Other registers might have leaf-specific purposes. The instruction
would be used only in 64-bit mode.
Two leaf functions are currently defined:
• CAPABILITIES (RAX == 0): Returns a bitmap of the supported SEAMOPS leaves.
• SEAMREPORT (RAX == 1): Generate SEAMREPORT structure.
The instruction is formatted to return the outcome of execution of leaf-specific function in RAX register. Leaf
specific functions might return information in additional GPR.
SEAMOPS is intended to lock CRPL_CPUSVN and BIOS_SE_SVN, if CRPL_CPUSVN is not already locked, if the
SEAMREPORT leaf is enabled. Once locked, the CPU helps prevent any further modifications to these registers.
Thus, CRPL_CPUSVN might be locked by either the first, non-faulting Intel SGX instruction or the first, SEAMOPS
instruction that executes with SEAMREPORT_ENABLED, i.e., the CAPABILITIES leaf reports support for the
SEAMREPORT leaf.

Operation

IF inSEAM==0 or ((IA32_EFER.LMA & CS.L) == 0) or in VMX non-root operation or lock-prefix-used
 THEN #UD;
ELSIF CPL > 0
 THEN #GP(0);
IF SEAMREPORT_ENABLED == 1 and CRPL_CPUSVN not locked
 Lock CRPL_CPUSVN and BIOS_SE_SVN
ENDIF
SWITCH RAX
 CASE 0: RAX = SEAMREPORT_ENABLED ? 0x3 : 0x1;break; // SEAMREPORT (leaf 1) is supported if
 // only if SEAMREPORT enabled
 DEFAULT: #GP(0); break;
ENDSWITCH

Flags Affected

None.

Protected Mode Exceptions

#UD The SEAMOPS instruction is not designed to be recognized in protected mode.

Real-Address Mode Exceptions

#UD The SEAMOPS instruction is not designed to be recognized in real-address mode.

Opcode/
Instruction

Op/
En

Description

66 0F 01 CE
SEAMOPS

ZO Invoke SEAM specific operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
Ref. # 343754-002 2-5

VMX INSTRUCTION SET EXTENSIONS
Virtual-8086 Mode Exceptions

#UD The SEAMOPS instruction is not designed to be recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SEAMOPS instruction is not designed to be recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0): If CPL > 0.
 Illegal leaf function specified in RAX.
 Leaf specific exceptions.

If any leaf-specific memory operand is in CS, DS, ES, FS, or GS segment and memory address
is non-canonical.

#SS(0): If any leaf-specific memory operand is in SS segment and memory address is non-canonical.
#UD: If not in SEAM root operation.

If LOCK prefix is used.
If IA32_VMX_PROCBASED_CTLS3[5] is 0.

#PF(PFEC): If a page fault occurs in accessing a leaf-specific memory operand.

SEAMOPS Data Structures

Table 2-2. TEE_TCB_SVN

Name Offset
(Bytes)

Size
(Bytes) Description

SEAM 0 2 Intel TDX module SVN.

RESERVED 2 14 Must be zero.

Table 2-3. TEE_TCB_INFO Structure

Name Offset
(Bytes)

Size
(Bytes) Description

VALID 0 8 Indicates TEE_TCB_INFO fields which are valid.

• 1 in the i-th significant bit reflects that the 8 bytes starting at
offset (8 * i) are valid.

• 0 in the i-th significant bit reflects that either 8 bytes starting at
offset (8 * i) is not populated or reserved, and is set to zero.

TEE_TCB_SVN 8 16 TEE_TCB_SVN array.

MRSEAM 24 48 Measurement of the Intel TDX module.

MRSIGNERSEAM 72 48 Measurement of TDX module signer if valid.

ATTRIBUTES 120 8 Additional configuration ATTRIBUTES if valid.

RESERVED 128 111 Must be zero.
2-6 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
Table 2-4. REPORTTYPE

Name Offset
(Bytes)

Size
(Bytes) Description

TYPE 0 1 TEE Type

0x00: SGX

0x7F - 0x01: RESERVED

0xFF - 0x80: SEAM Defined

Note: Bit 7 defines either hardware implementation (0) or Intel TDX
module implementation (1).

SUBTYPE 1 1 TYPE-specific subtype.

VERSION 2 1 TYPE-specific version. Must be 0 for Intel SGX.

RESERVED 3 1 Must be zero.

Table 2-5. REPORTMACSTRUCT

Name Offset
(Bytes)

Size
(Bytes) Description MAC

REPORTTYPE 0 4 Type Header Structure Y

RESERVED 4 12 Must be zero. Y

CPUSVN 16 16 CPUSVN Y

TEE_TCB_INFO_HASH 32 48 SHA384 of TEE_TCB_INFO Y

TEE_INFO_HASH 80 48 SHA384 of TEE_INFO (or 0x00 if no TEE is represented) Y

REPORTDATA 128 64 A set of data used for communication between the caller
and the target.

Y

RESERVED 192 32 Must be zero. Y

MAC 224 32 The MAC over the REPORTMACSTRUCT with report-type
specific MAC key.

N

Table 2-6. SEAMREPORT

Name Offset
(Bytes)

Size
(Bytes) Description

REPORTMACSTRUCT 0 256 REPORTMAC Structure for REPORT.

TEE_TCB_INFO 256 239 TEE_TCB_INFO whose HASH is found in the REPORTMACSTRUCT.
Ref. # 343754-002 2-7

VMX INSTRUCTION SET EXTENSIONS
SEAMOPS Leaf Functions

SEAMREPORT Leaf

Helps create a SEAMREPORT structure that contains the measurements/configuration information of the SEAM
and, when invoked on behalf of a TEE, it includes the TEE measurements. The SEAMREPORT operands are
described in Table 2-7.

SEAMREPORT Leaf Description

This instruction is used by the Intel TDX module and helps create a report, SEAMREPORT, of the Intel TDX module
or a TEE (e.g., TD) hosted by the Intel TDX module. The SEAMREPORT structure can contain the measure-
ments/configuration information of the TEE, the Intel TDX module, and any additional components in the TEE TCB.
The SEAMREPORT has a REPORTMACSTRUCT that is designed to be integrity protected with a MAC that covers the
TEE_TCB_INFO_HASH, the TEE_INFO_HASH (when provided), and the REPORTDATA. The TEE_TCB_INFO_HASH is
meant as the SHA384 hash of the TEE_TCB_INFO structure, which reflects the measurement/configuration of the
SEAM and other elements in the TCB of all instances of TEE hosted by the SEAM. The VALID field contains an array
of flags that can indicate which fields have been populated, as not all fields apply to all reports. When used by the
Intel TDX module to create a TEE report, the TEE_INFO_HASH is expected to be a SHA384 hash of measurement
and configuration of the TEE being reported. When used to report just the Intel TDX module, TEE_INFO_HASH
might be a string of zeros.
The Intel TDX module can select the report type values, however, all valid values for REPORTTYPE.TYPE should have
the high order bit set to 1. Failure to set this bit will result in a SEAM_INVALID_REPORT_TYPE error. The Intel TDX
module additionally helps provide the REPORTDATA, a 64-byte value to be included in the SEAMREPORT and, even-
tually, the quote. This aids the caller of the instruction in associating data with the Intel TDX module or the TEE it
reports.
To assist verification of the integrity of the SEAMREPORT, software should help verify any hashes present in the
report. The REPORTMACSTRUCT.TEE_TCB_INFO_HASH should match the hash of SEAMREPORT.TEE_TCB_INFO. If
the REPORTMACSTRUCT.TEE_INFO_HASH is non-zero, it should match the hash of the separate, TEE_INFO struc-
ture. By design, if either value does not match, the report has been tampered. Software uses
ENCLU[EVERIFYREPORT2] to help verify the integrity of the REPORTMACSTRUCT itself.

Table 2-7. SEAMREPORT Operands
Operand In / Out Description

RAX
In 1 (SEAMOPS instruction leaf number).

Out Leaf-specific return code.

RCX In 1024B-aligned linear address, of newly created SEAMREPORT structures.

RDX In Report Type Header in the low order 32 bits. Upper 32 bits must be zero.

R8 In 64B-aligned linear address of REPORTDATA to be signed.

R9 In 64B-aligned linear address of TEE_INFO_HASH to be signed.

Table 2-8. SEAMREPORT Memory Operands
Explicit /
Implicit

Linear Address Name Access
Permissions

Alignment Concurrency
Restrictions

Explicit RCX SEAMREPORT RW 1024B None

Explicit R8 REPORTDATA R 64B None

Explicit R9 TEE_INFO_HASH R 64B None
2-8 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
SEAMREPORT Leaf Operation

// Temporary Variables setup with input register operands
SEAMREPORT *tmp_seamreport_la = RCX; // Linear address of SEAMREPORT
uint64_t tmp_report_type = RDX; // Report type
void *tmp_reportdata_la = R8; // Linear address of REPORTDATA
SHA384_HASH_t *tmp_tee_info_hash_la = R9; // Linear address of TEE_INFO_HASH
KEY256_t tmp_report_key; // 256b report key

RAX = SEAM_SUCCESS;
RFLAGS.{ZF, CF, PF, AF, OF, SF} = 0;

// Ensure SEAMREPORT pointer is 1024B aligned and read/write accessible
IF (tmp_seamreport_la is not 1024B aligned) #GP(0);
<< tmp_seamreport_la must be read/write accessible>>

// Ensure TEE_INFO_HASH pointer is 64B aligned and read accessible
IF (tmp_tee_info_hash_la is not 64B aligned) #GP(0);
<< tmp_tee_info_hash_la must be read accessible>>

// Ensure REPORTDATA pointer is 64B aligned and read accessible
IF (tmp_reportdata_la is not 64B aligned) #GP(0);
<< tmp_reportdata_la must be read accessible>>

// Check reserved bit in REPORT TYPE and that TYPE reflects SEAM implementation
IF ((tmp_report_type & 0xFFFFFFFFFF000000) != 0) || (tmp_report_type & 0x0000000000000080) == 0))
{

RAX = SEAM_INVALID_REPORT_TYPE;
RFLAGS.ZF = 1;
GOTO END;

}

// Create SEAMREPORT in a temporary buffer
tmp_seamreport = 0;
tmp_seamreport.REPORTMACSTRUCT.REPORTTYPE = tmp_report_type[31:0];
tmp_seamreport.REPORTMACSTRUCT.RESERVED = 0x00;
tmp_seamreport.REPORTMACSTRUCT.CPUSVN = CRPL_CPUSVN;

// Populate TEE_TCB_INFO depending on the Intel TDX module type
tmp_seamreport.TEE_TCB_INFO.TEE_TCB_SVN = CRPL_TEE_TCB_INFO.TEE_TCB_SVN;
tmp_seamreport.TEE_TCB_INFO.MRSEAM = CRPL_TEE_TCB_INFO.MRSEAM;
IF (<Intel SEAM>)
{

tmp_seamreport.TEE_TCB_INFO.VALID = 111111111b;
}
ELSE
{

tmp_seamreport.TEE_TCB_INFO.VALID = 1111111111111111b;
tmp_seamreport.TEE_TCB_INFO.MRSIGNERSEAM = CRPL_TEE_TCB_INFO.MRSIGNERSEAM;
tmp_seamreport.TEE_TCB_INFO.ATTRIBUTES = CRPL_TEE_TCB_INFO.ATTRIBUTES;

}
tmp_seamreport.REPORTMACSTRUCT.TEE_TCB_INFO_HASH = SHA384(tmp_seamreport.TEE_TCB_INFO);
Ref. # 343754-002 2-9

VMX INSTRUCTION SET EXTENSIONS
// Copy TEE_INFO_HASH and REPORTDATA from memory
tmp_seamreport.REPORTMACSTRUCT.TEE_INFO_HASH = *tmp_tee_info_hash_la;
tmp_seamreport.REPORTMACSTRUCT.REPORTDATA = *tmp_reportdata_la;

// Compute MAC on the first 224B of REPORTMACSTRUCT
tmp_report_key = CR_REPORT_KEY2;
tmp_seamreport.REPORTMACSTRUCT.MAC = HMAC-SHA256(tmp_report_key, &tmp_seamreport.REPORTMACSTRUCT, 224);

// Copy out report to memory
*tmp_seamreport_la = tmp_seamreport;

END:

Flags Affected

ZF: Set if failed due to an error (see error codes below); otherwise, it is cleared to zero.
CF, PF, AF, OF, SF: Cleared to zero.

Error Codes

• SEAM_SUCCESS (0x00): SEAMREPORT is successful.
• SEAM_INVALID_REPORT_TYPE (0x01): Invalid report type.

64-Bit Mode Exceptions

#GP(0): If a memory address is non-canonical form.
If a memory operand is not properly aligned.

#PF(fault-code): If a page fault occurs in accessing memory operands.
2-10 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
SEAMRET — Return to Legacy VMX Root Operation

Instruction Operand Encoding

Description

This instruction helps the SEAM VMX root software exit from SEAM VMX root operation and resume execution of the
VMM software in legacy VMX root operation.
SEAMRET from the P-SEAMLDR clears the current VMCS structure pointed to by the current-VMCS pointer. A VMM
that invokes the P-SEAMLDR using SEAMCALL must reload the current-VMCS, if required, using the VMPTRLD
instruction.

Operation

IF inSEAM==0 or ((IA32_EFER.LMA & CS.L) == 0) or in VMX non-root operation
 THEN #UD;
ELSIF CPL > 0
 THEN #GP(0);
ELSIF current-VMCS pointer is not valid
 THEN VMfailInvalid;
Check settings of VMX controls and host-state area;
IF invalid settings
 THEN
 VMfailValid(VM entry with invalid VMX-control field(s)) or
 VMfailValid(VM entry with invalid host-state field(s)) as appropriate;
 ELSE
 Attempt to load guest state including event inhibits (NMI, SMI, etc.)
 and PDPTRs as appropriate based on entry controls;
 Clear address-range monitoring;
 IF failure in checking guest state or PDPTRs
 THEN VM entry fails // see Section 26.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3C
 ELSE
 Attempt to load MSRs from VM-entry MSR-load area;
 IF failure
 THEN VM entry fails // see Section 26.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3C
 ELSE

current-VMCS = current-VMCS.VMCS-link-pointer
IF inP_SEAMLDR == 1

THEN
 If current-VMCS != FFFFFFFF_FFFFFFFFH
 THEN
 Ensure data for VMCS referenced by current-VMC is in memory
 Initialize implementation-specific data in all VMCS referenced by current-VMCS
 Set launch state of VMCS referenced by current-VMCS to “clear”
 current-VMCS = FFFFFFFF_FFFFFFFFH
 FI;
 inP_SEAMLDR = 0

Opcode/
Instruction

Op/
En

Description

66 0F 01 CD
SEAMRET

ZO Return to legacy VMX root operation from SEAM VMX root operation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
Ref. # 343754-002 2-11

VMX INSTRUCTION SET EXTENSIONS
 Release P_SEAMLDR_MUTEX
 FI;

 inSEAM = 0 // Closes SEAMRR access
VM entry succeeds;

 FI;
 FI;
FI;

// Further details of the operation of the VM-entry appear in Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3C.

Flags Affected

The operation section uses the pseudo-functions VMsucceed, VMfail(ErrorNumber), VMfailInvalid, and
VMfailValid(ErrorNumber). See the operation section and Section 2.1. See Section 2.2 for error numbers. The
following error numbers can be reported by SEAMRET: 7, 8, and 26.

Protected Mode Exceptions

#UD The SEAMRET instruction is not designed to be recognized in protected mode.

Real-Address Mode Exceptions

#UD The SEAMRET instruction is not designed to be recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SEAMRET instruction is not designed to be recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SEAMRET instruction is not designed to be recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If CPL > 0.
#UD If logical processor is not in SEAM VMX root operation.

If IA32_VMX_PROCBASED_CTLS3[5] is 0.
2-12 Ref. # 343754-002

VMX INSTRUCTION SET EXTENSIONS
TDCALL — Call to VM Monitor from TD Guest

Instruction Operand Encoding

Description

This instruction is designed to allow guest privileged software to make a call for service into a VM monitor. The
details of the programming interface for such calls are Intel TDX module-specific; this instruction can cause a VM
exit, registering the appropriate, exit reason. Use of this instruction outside VMX non-root operation can cause
#UD fault.

Operation

IF not in VMX non-root operation THEN #UD;
ELSIF CPL > 0 THEN #GP(0);
ELSE VM exit with exit reason TDCALL (4DH) and zero exit qualification

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If CPL > 0.
#UD If logical processor is not in VMX non-root operation.

Real-Address Mode Exceptions

#GP(0) If CPL > 0.
#UD If logical processor is not in VMX non-root operation.

Virtual-8086 Mode Exceptions

#GP(0) If CPL > 0.
#UD If logical processor is not in VMX non-root operation.

Compatibility Mode Exceptions

#GP(0) If CPL > 0.
#UD If logical processor is not in VMX non-root operation.

64-Bit Mode Exceptions

#GP(0) If CPL > 0.
#UD If logical processor is not in VMX non-root operation.

If IA32_VMX_PROCBASED_CTLS3[5] is 0.

Opcode/
Instruction

Op/
En

Description

66 0F 01 CC
TDCALL

ZO Call to VM monitor by causing a VM exit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
Ref. # 343754-002 2-13

VMX INSTRUCTION SET EXTENSIONS
VMRESUME/VMLAUNCH — Resume/Launch Virtual Machine
The following additional actions can be performed by VMRESUME/VMLAUNCH in SEAM VMX root operation:

1. If the “enable EPT” VM-execution control is 0, then cause a VM entry failure due to invalid control field.

2. Shared-EPTP execution control must not set any reserved bits.
2-14 Ref. # 343754-002

INTEL® SGX INSTRUCTION SET EXTENSIONS
CHAPTER 3
INTEL® SGX INSTRUCTION SET EXTENSIONS

The ENCLU instruction defines a new leaf, EVERIFYREPORT2, that can be used to help verify the MAC on reports
generated using SEAMOPS[SEAMREPORT]. CPUID leaf 12, sub-leaf 0, EAX bit 7 is set to 1 to help enumerate
support for the EVERIFYREPORT2 leaf of ENCLU. The EVERIFYREPORT2 instruction layout is described in Table 3-1.

3.1 EVERIFYREPORT2 LEAF DESCRIPTION

Description

This enclave mode instruction enables verification of a cryptographic REPORTMACSTRUCT that describes the
contents of a TD, and the REPORTMACSTRUCT can be used to determine that the TEE described in the TDREPORT
was running on the same platform.

The instruction flow is designed as follows:

1. Verify alignment requirements of the operands.

2. Validate the operand (RBX) is inside the enclave.

3. Compute a MAC over REPORTMACSTRUCT structure.

4. Determine if the computed MAC matches the MAC attached to the REPORTMACSTRUCT structure.

Operation

Table 3-1. EVERIFYREPORT2 Instruction Layout
Instruction EAX RBX RCX RDX

EVERIFYREPORT2 08H REPORTMACSTRUCT
effective address.

Opcode /
Instruction

Description

EAX = 08H
ENCLU[EVERIFYREPORT2]

Verifies a cryptographic report of the TD. RBX holds the address of a REPORTMACSTRUCT.

Table 3-2. EVERIFYREPORT2 Memory Parameter Information
Memory Parameter Permissions Semantics

[RBX]REPORTMACSTRUCT R Enclave Access

Table 3-3. Temp Variables in EVERIFYREPORT2 Operational Flow
Variable Name Type Size Description

TMP_CURRENTSECS Effective Address 32/64 Bytes The address of the SECS for the currently executing
enclave.

TMP_REPORTMACSTRUCT REPORTMACSTRUCT 256 Bytes Cryptographic Report of the TEE.

TMP_MAC MAC 32 Bytes MAC over REPORT calculated by instruction.
Ref. # 343754-002 3-1

INTEL® SGX INSTRUCTION SET EXTENSIONS
// check alignment of REPORTMACSTRUCT
IF (DS:RBX is not 256 Byte aligned) #GP(0);

// check to see if REPORTMACSTRUCT is inside the current enclave
IF (DS:RBX is not within CR_ELRANGE) #GP(0);

// make sure DS:RBX is read accessible
<< DS:RBX should be read accessible >>

// read EPCM VALID, PENDING, MODIFIED, BLOCKED, PT, R, W, X, and ENCLAVESECS
// fields atomically check that DS:RBX is a valid and accessible EPC page
IF ((DS:RBX does not resolve to an EPC address) OR
 (EPCM(DS:RBX).VALID = 0) OR
 (EPCM(DS:RBX).PENDING = 1) OR
 (EPCM(DS:RBX).MODIFIED = 1) OR
 (EPCM(DS:RBX).BLOCKED = 1) OR
 (EPCM(DS:RBX).R is 0) OR
 (EPCM(DS:RBX).PT != PT_REG) OR
 (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) OR
 (EPCM(DS:RBX).ENCLAVEADDRESS != (DS:RBX & ~0xFFF)))
{
 #PF(DS:RBX);
}

// Create local/protected copy of REPORTMACSTRUCT
TMP_REPORTMACSTRUCT[255:0B] = DS:RBX[255:0B];

// Verify REPORTMACSTRUCT header
IF ((TMP_REPORTMACSTRUCT.TYPE != 0x81) OR // TDX implemented by Intel TDX module
 (TMP_REPORTMACSTRUCT.REPORTTYPE.SUBTYPE != 0x00) OR
 (TMP_REPORTMACSTRUCT.REPORTTYPE.VERSION != 0x00) OR
 (TMP_REPORTMACSTRUCT.RESERVED != 0))
{
 RFLAGS.ZF = 1;
 RAX = SGX_INVALID_REPORTMACSTRUCT;
 goto EXIT;
}

// Verify CPUSVN is a valid value
IF (TMP_REPORTMACSTRUCT.CPUSVN is unsupported by the CPU) {
 RFLAGS.ZF = 1;
 RAX = SGX_INVALID_CPUSVN;
 goto EXIT
}

// Verify MAC on REPORTMACSTRUCT
TMP_MAC = MAC(CR_REPORT_KEY2, TMP_REPORTMACSTRUCT[223:0B], 224);
IF (TMP_MAC != TMP_REPORTMACSTRUCT.MAC)
{
 RFLAGS.ZF = 1;
 RAX = SGX_INVALID_REPORTMACSTRUCT;
 goto EXIT
}
RAX=0;
3-2 Ref. # 343754-002

INTEL® SGX INSTRUCTION SET EXTENSIONS
RFLAGS.ZF=0;

EXIT:
RFLAGS.CF=0;
RFLAGS.PF=0;
RFLAGS.AF=0;
RFLAGS.OF=0;
RFLAGS.SF=0;

Flags Affected

None.

Error Codes

• SGX_INVALID_CPUSVN (32): If REPORTMACSTRUCT.CPUSVN is an unsupported value.
• SGX_INVALID_REPORTMACSTRUCT (28): REPORTMACSTRUCT included illegal values or MAC verification

failed.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If the DS segment is unusable.
If a memory operand is not properly aligned.

#PF(fault-code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(fault-code) If a page fault occurs in accessing memory operands.
Ref. # 343754-002 3-3

INTEL® SGX INSTRUCTION SET EXTENSIONS
3-4 Ref. # 343754-002

	Revision History
	Chapter 1 Secure Arbitration Mode (SEAM)
	1.1 Overview
	1.2 Intel® TDX Module and Intel P-SEAMLDR Module
	1.3 SEAM VMX Root Operation
	1.3.1 TDX Private KeyID
	1.3.2 Memory Typing
	1.3.3 Caching Translation Information
	1.3.4 Event Handling

	1.4 SEAM VMX Non-Root Operation
	1.4.1 SEAM VMX Non-Root Execution Controls
	1.4.2 Guest Physical Address Translation
	1.4.3 Linear Address Translation
	1.4.4 Memory Typing
	1.4.5 Caching Translations Information
	1.4.6 Virtual Interrupt Delivery

	1.5 Operation Outside SEAM

	Chapter 2 VMX Instruction Set Extensions
	2.1 Conventions
	2.2 VM Instruction Error Numbers
	2.3 Instruction Set Reference
	SEAMCALL — Call to SEAM VMX Root Operation
	SEAMOPS — Invoke SEAM Operations
	SEAMRET — Return to Legacy VMX Root Operation
	TDCALL — Call to VM Monitor from TD Guest
	VMRESUME/VMLAUNCH — Resume/Launch Virtual Machine

	Chapter 3 Intel® SGX Instruction Set Extensions
	3.1 EVERIFYREPORT2 Leaf Description

