Lu Ken commited on
Commit
db0a536
·
1 Parent(s): cbd8dfd

remove main.py

Browse files

Signed-off-by: Lu Ken <[email protected]>

Files changed (2) hide show
  1. app.py +1 -1
  2. main.py +0 -87
app.py CHANGED
@@ -79,7 +79,7 @@ def main():
79
  st.set_page_config("TDX Doctor")
80
  st.header("Please ask questions related to TDX or UEFI")
81
 
82
- user_question = st.text_input("Ask a Question like 'please describe xxx in 400 words'")
83
  if user_question:
84
  user_input(user_question)
85
 
 
79
  st.set_page_config("TDX Doctor")
80
  st.header("Please ask questions related to TDX or UEFI")
81
 
82
+ user_question = st.text_input("Ask a Question like \n- please describe EFI PEI Core in 200 words\n- please describe intel tdx in 200 words\n-please explain SEAMCALL in 200 words")
83
  if user_question:
84
  user_input(user_question)
85
 
main.py DELETED
@@ -1,87 +0,0 @@
1
- import streamlit as st
2
- from PyPDF2 import PdfReader
3
- from langchain.text_splitter import RecursiveCharacterTextSplitter
4
- import os
5
- from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
- import google.generativeai as genai
7
- from langchain_community.vectorstores import FAISS
8
- from langchain_google_genai import ChatGoogleGenerativeAI
9
- from langchain.chains.question_answering import load_qa_chain
10
- from langchain.prompts import PromptTemplate
11
- from dotenv import load_dotenv
12
- import shutil
13
- import argparse
14
-
15
- PDF_PATH=os.path.join(os.path.dirname(__file__), "docs")
16
-
17
- def load_pdfs():
18
- faiss_index_path = os.path.join(os.path.dirname(__file__), "faiss_index")
19
-
20
- if os.path.exists(faiss_index_path):
21
- return
22
-
23
- pdfs = [f for f in os.listdir(PDF_PATH) if os.path.isfile(os.path.join(PDF_PATH, f))]
24
-
25
- text=""
26
- for pdf in pdfs:
27
- print("process PDF: %s..." % pdf)
28
- pdf_reader= PdfReader(os.path.join(PDF_PATH, pdf))
29
- for page in pdf_reader.pages:
30
- text+= page.extract_text()
31
-
32
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
33
- text_chunks = text_splitter.split_text(text)
34
-
35
- embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
36
- vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
37
- vector_store.save_local("faiss_index")
38
-
39
- return text
40
-
41
- def get_conversational_chain():
42
-
43
- prompt_template = """
44
- Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
45
- provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
46
- Context:\n {context}?\n
47
- Question: \n{question}\n
48
-
49
- Answer:
50
- """
51
-
52
- model = ChatGoogleGenerativeAI(model="gemini-pro",
53
- temperature=0.3)
54
-
55
- prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
56
- chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
57
-
58
- return chain
59
-
60
- def user_input(user_question):
61
- embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
62
-
63
- new_db = FAISS.load_local("faiss_index", embeddings)
64
- docs = new_db.similarity_search(user_question)
65
-
66
- chain = get_conversational_chain()
67
-
68
-
69
- response = chain(
70
- {"input_documents":docs, "question": user_question}
71
- , return_only_outputs=True)
72
-
73
- print(response)
74
- st.write("Reply: ", response["output_text"])
75
-
76
- def main():
77
- load_pdfs()
78
-
79
- st.set_page_config("TDX Doctor")
80
- st.header("Please ask questions related to TDX or UEFI")
81
-
82
- user_question = st.text_input("Ask a Question like \n- please describe EFI PEI Core in 200 words\n- please describe intel tdx in 200 words\n-please explain SEAMCALL in 200 words")
83
- if user_question:
84
- user_input(user_question)
85
-
86
- if __name__ == "__main__":
87
- main()