Spaces:
Running
Running
Lu Ken
commited on
Commit
·
db0a536
1
Parent(s):
cbd8dfd
remove main.py
Browse filesSigned-off-by: Lu Ken <[email protected]>
app.py
CHANGED
@@ -79,7 +79,7 @@ def main():
|
|
79 |
st.set_page_config("TDX Doctor")
|
80 |
st.header("Please ask questions related to TDX or UEFI")
|
81 |
|
82 |
-
user_question = st.text_input("Ask a Question like
|
83 |
if user_question:
|
84 |
user_input(user_question)
|
85 |
|
|
|
79 |
st.set_page_config("TDX Doctor")
|
80 |
st.header("Please ask questions related to TDX or UEFI")
|
81 |
|
82 |
+
user_question = st.text_input("Ask a Question like \n- please describe EFI PEI Core in 200 words\n- please describe intel tdx in 200 words\n-please explain SEAMCALL in 200 words")
|
83 |
if user_question:
|
84 |
user_input(user_question)
|
85 |
|
main.py
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PyPDF2 import PdfReader
|
3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
import os
|
5 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
-
import google.generativeai as genai
|
7 |
-
from langchain_community.vectorstores import FAISS
|
8 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
-
from langchain.chains.question_answering import load_qa_chain
|
10 |
-
from langchain.prompts import PromptTemplate
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import shutil
|
13 |
-
import argparse
|
14 |
-
|
15 |
-
PDF_PATH=os.path.join(os.path.dirname(__file__), "docs")
|
16 |
-
|
17 |
-
def load_pdfs():
|
18 |
-
faiss_index_path = os.path.join(os.path.dirname(__file__), "faiss_index")
|
19 |
-
|
20 |
-
if os.path.exists(faiss_index_path):
|
21 |
-
return
|
22 |
-
|
23 |
-
pdfs = [f for f in os.listdir(PDF_PATH) if os.path.isfile(os.path.join(PDF_PATH, f))]
|
24 |
-
|
25 |
-
text=""
|
26 |
-
for pdf in pdfs:
|
27 |
-
print("process PDF: %s..." % pdf)
|
28 |
-
pdf_reader= PdfReader(os.path.join(PDF_PATH, pdf))
|
29 |
-
for page in pdf_reader.pages:
|
30 |
-
text+= page.extract_text()
|
31 |
-
|
32 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
33 |
-
text_chunks = text_splitter.split_text(text)
|
34 |
-
|
35 |
-
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
36 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
37 |
-
vector_store.save_local("faiss_index")
|
38 |
-
|
39 |
-
return text
|
40 |
-
|
41 |
-
def get_conversational_chain():
|
42 |
-
|
43 |
-
prompt_template = """
|
44 |
-
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
45 |
-
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
46 |
-
Context:\n {context}?\n
|
47 |
-
Question: \n{question}\n
|
48 |
-
|
49 |
-
Answer:
|
50 |
-
"""
|
51 |
-
|
52 |
-
model = ChatGoogleGenerativeAI(model="gemini-pro",
|
53 |
-
temperature=0.3)
|
54 |
-
|
55 |
-
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
56 |
-
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
57 |
-
|
58 |
-
return chain
|
59 |
-
|
60 |
-
def user_input(user_question):
|
61 |
-
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
62 |
-
|
63 |
-
new_db = FAISS.load_local("faiss_index", embeddings)
|
64 |
-
docs = new_db.similarity_search(user_question)
|
65 |
-
|
66 |
-
chain = get_conversational_chain()
|
67 |
-
|
68 |
-
|
69 |
-
response = chain(
|
70 |
-
{"input_documents":docs, "question": user_question}
|
71 |
-
, return_only_outputs=True)
|
72 |
-
|
73 |
-
print(response)
|
74 |
-
st.write("Reply: ", response["output_text"])
|
75 |
-
|
76 |
-
def main():
|
77 |
-
load_pdfs()
|
78 |
-
|
79 |
-
st.set_page_config("TDX Doctor")
|
80 |
-
st.header("Please ask questions related to TDX or UEFI")
|
81 |
-
|
82 |
-
user_question = st.text_input("Ask a Question like \n- please describe EFI PEI Core in 200 words\n- please describe intel tdx in 200 words\n-please explain SEAMCALL in 200 words")
|
83 |
-
if user_question:
|
84 |
-
user_input(user_question)
|
85 |
-
|
86 |
-
if __name__ == "__main__":
|
87 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|