|
|
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
import os |
|
import time |
|
import logging |
|
from collections import deque |
|
from typing import Dict, List |
|
import importlib |
|
import openai |
|
import chromadb |
|
import tiktoken as tiktoken |
|
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction |
|
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings |
|
import re |
|
from groq import Groq |
|
|
|
|
|
from chromadb.config import Settings |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import numpy |
|
|
|
import psycopg2 |
|
import shutil |
|
import gradio as gr |
|
from mysite.libs.utilities import chat_with_interpreter, completion, process_file |
|
from interpreter import interpreter |
|
import mysite.interpreter.interpreter_config |
|
import importlib |
|
import os |
|
import pkgutil |
|
import async_timeout |
|
import asyncio |
|
import sys |
|
from mysite.interpreter.google_chat import send_google_chat_card_thread,send_google_chat_card |
|
|
|
args = sys.argv |
|
|
|
|
|
DESCRIPTION = """ |
|
<div> |
|
<h1 style="text-align: center;">develop site</h1> |
|
<p>🦕 共同開発 AIシステム設定 LINE開発 CHATGPTS CHATGPTアシスタント設定 AI自動開発設定 APPSHEET GAS PYTHON</p> |
|
</div> |
|
<!-- Start of HubSpot Embed Code --> |
|
<script type="text/javascript" id="hs-script-loader" async defer src="//js-na1.hs-scripts.com/46277896.js"></script> |
|
<!-- End of HubSpot Embed Code --> |
|
""" |
|
|
|
LICENSE = """ |
|
<p/> |
|
<!-- Start of HubSpot Embed Code --> |
|
<script type="text/javascript" id="hs-script-loader" async defer src="//js-na1.hs-scripts.com/46277896.js"></script> |
|
<!-- End of HubSpot Embed Code --> |
|
--- |
|
Built with Meta Llama 3 |
|
""" |
|
|
|
PLACEHOLDER = """ |
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> |
|
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1> |
|
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> |
|
</div> |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
css = """ |
|
.gradio-container { |
|
height: 100vh; /* 全体の高さを100vhに設定 */ |
|
display: flex; |
|
flex-direction: column; |
|
} |
|
.gradio-tabs { |
|
flex: 1; /* タブ全体の高さを最大に設定 */ |
|
display: flex; |
|
flex-direction: column; |
|
} |
|
.gradio-tab-item { |
|
flex: 1; /* 各タブの高さを最大に設定 */ |
|
display: flex; |
|
flex-direction: column; |
|
overflow: hidden; /* オーバーフローを隠す */ |
|
} |
|
.gradio-block { |
|
flex: 1; /* ブロックの高さを最大に設定 */ |
|
display: flex; |
|
flex-direction: column; |
|
} |
|
.gradio-chatbot { |
|
height: 100vh; /* チャットボットの高さを100vhに設定 */ |
|
overflow-y: auto; /* 縦スクロールを有効にする */ |
|
} |
|
""" |
|
GENERATION_TIMEOUT_SEC = 60 |
|
|
|
chatbot2 = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") |
|
|
|
|
|
|
|
class ProductDatabase: |
|
def __init__(self, database_url): |
|
self.database_url = database_url |
|
self.conn = None |
|
|
|
def connect(self): |
|
self.conn = psycopg2.connect(self.database_url) |
|
|
|
def close(self): |
|
if self.conn: |
|
self.conn.close() |
|
|
|
def fetch_data(self): |
|
with self.conn.cursor() as cursor: |
|
cursor.execute("SELECT id FROM products") |
|
rows = cursor.fetchall() |
|
return rows |
|
|
|
def update_data(self, product_id, new_price): |
|
with self.conn.cursor() as cursor: |
|
cursor.execute("UPDATE products SET price = %s WHERE id = %s", (new_price, product_id)) |
|
self.conn.commit() |
|
|
|
|
|
model_name = "sentence-transformers/all-MiniLM-L6-v2" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModel.from_pretrained(model_name) |
|
client = chromadb.Client(Settings(anonymized_telemetry=False)) |
|
|
|
|
|
|
|
|
|
LLM_MODEL = os.getenv("LLM_MODEL", os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo")).lower() |
|
|
|
|
|
OPENAI_API_KEY = os.getenv("api_key", "") |
|
if not (LLM_MODEL.startswith("llama") or LLM_MODEL.startswith("human")): |
|
assert OPENAI_API_KEY, "\033[91m\033[1m" + "OPENAI_API_KEY environment variable is missing from .env" + "\033[0m\033[0m" |
|
|
|
|
|
RESULTS_STORE_NAME = os.getenv("RESULTS_STORE_NAME", os.getenv("TABLE_NAME", "")) |
|
assert RESULTS_STORE_NAME, "\033[91m\033[1m" + "RESULTS_STORE_NAME environment variable is missing from .env" + "\033[0m\033[0m" |
|
|
|
|
|
INSTANCE_NAME = os.getenv("INSTANCE_NAME", os.getenv("BABY_NAME", "BabyAGI")) |
|
COOPERATIVE_MODE = "none" |
|
JOIN_EXISTING_OBJECTIVE = False |
|
|
|
|
|
|
|
OBJECTIVE = "ボットの性能をよくする方法 日本語で説明" |
|
OBJECTIVE = f"""チャットボットでの広告展開""" |
|
thread_name = "" |
|
args = sys.argv |
|
if len(args) > 1: |
|
print(args[1]) |
|
thread_name = args[1] |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
print("not args") |
|
|
|
with open('/home/user/app/babyagi/prompt.txt', 'r') as file: |
|
OBJECTIVE = file.read() |
|
|
|
|
|
INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", "")) |
|
|
|
|
|
OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0)) |
|
|
|
def create_vector(): |
|
inputs = tokenizer(result, return_tensors="pt", max_length=512, truncation=True) |
|
outputs = model(**inputs) |
|
|
|
embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist() |
|
print(embeddings) |
|
import requests |
|
|
|
url = "https://kenken999-php.hf.space/api/v1.php" |
|
|
|
payload = f"""model_name={embeddings}&vector_text={result}&table=products&action=insert""" |
|
headers = { |
|
'X-Auth-Token': 'admin', |
|
'Content-Type': 'application/x-www-form-urlencoded', |
|
'Cookie': 'runnerSession=muvclb78zpsdjbm7y9c3; pD1lszvk6ratOZhmmgvkp=13767810ebf0782b0b51bf72dedb63b3' |
|
} |
|
|
|
response = requests.request("POST", url, headers=headers, data=payload) |
|
|
|
print(response.text) |
|
return True |
|
|
|
def insert_product(): |
|
inputs = tokenizer(result, return_tensors="pt", max_length=512, truncation=True) |
|
outputs = model(**inputs) |
|
|
|
embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist() |
|
print(embeddings) |
|
import requests |
|
|
|
url = "https://kenken999-php.hf.space/api/v1.php" |
|
|
|
payload = f"""model_name={embeddings}&vector_text={result}&table=products&action=insert""" |
|
headers = { |
|
'X-Auth-Token': 'admin', |
|
'Content-Type': 'application/x-www-form-urlencoded', |
|
'Cookie': 'runnerSession=muvclb78zpsdjbm7y9c3; pD1lszvk6ratOZhmmgvkp=13767810ebf0782b0b51bf72dedb63b3' |
|
} |
|
|
|
response = requests.request("POST", url, headers=headers, data=payload) |
|
|
|
print(response.text) |
|
return True |
|
|
|
|
|
|
|
|
|
def can_import(module_name): |
|
try: |
|
importlib.import_module(module_name) |
|
return True |
|
except ImportError: |
|
return False |
|
|
|
|
|
DOTENV_EXTENSIONS = os.getenv("DOTENV_EXTENSIONS", "").split(" ") |
|
|
|
|
|
|
|
ENABLE_COMMAND_LINE_ARGS = ( |
|
os.getenv("ENABLE_COMMAND_LINE_ARGS", "false").lower() == "true" |
|
) |
|
if ENABLE_COMMAND_LINE_ARGS: |
|
if can_import("extensions.argparseext"): |
|
from extensions.argparseext import parse_arguments |
|
|
|
OBJECTIVE, INITIAL_TASK, LLM_MODEL, DOTENV_EXTENSIONS, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE = parse_arguments() |
|
|
|
|
|
|
|
if LLM_MODEL.startswith("human"): |
|
if can_import("extensions.human_mode"): |
|
from extensions.human_mode import user_input_await |
|
|
|
|
|
|
|
|
|
if DOTENV_EXTENSIONS: |
|
if can_import("extensions.dotenvext"): |
|
from extensions.dotenvext import load_dotenv_extensions |
|
|
|
load_dotenv_extensions(DOTENV_EXTENSIONS) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("\033[95m\033[1m" + "\n*****CONFIGURATION*****\n" + "\033[0m\033[0m") |
|
print(f"Name : {INSTANCE_NAME}") |
|
print(f"Mode : {'alone' if COOPERATIVE_MODE in ['n', 'none'] else 'local' if COOPERATIVE_MODE in ['l', 'local'] else 'distributed' if COOPERATIVE_MODE in ['d', 'distributed'] else 'undefined'}") |
|
print(f"LLM : {LLM_MODEL}") |
|
|
|
|
|
|
|
assert OBJECTIVE, "\033[91m\033[1m" + "OBJECTIVE environment variable is missing from .env" + "\033[0m\033[0m" |
|
assert INITIAL_TASK, "\033[91m\033[1m" + "INITIAL_TASK environment variable is missing from .env" + "\033[0m\033[0m" |
|
|
|
LLAMA_MODEL_PATH = os.getenv("LLAMA_MODEL_PATH", "models/llama-13B/ggml-model.bin") |
|
if LLM_MODEL.startswith("llama"): |
|
if can_import("llama_cpp"): |
|
from llama_cpp import Llama |
|
|
|
print(f"LLAMA : {LLAMA_MODEL_PATH}" + "\n") |
|
assert os.path.exists(LLAMA_MODEL_PATH), "\033[91m\033[1m" + f"Model can't be found." + "\033[0m\033[0m" |
|
|
|
CTX_MAX = 1024 |
|
LLAMA_THREADS_NUM = int(os.getenv("LLAMA_THREADS_NUM", 8)) |
|
|
|
print('Initialize model for evaluation') |
|
llm = Llama( |
|
model_path=LLAMA_MODEL_PATH, |
|
n_ctx=CTX_MAX, |
|
n_threads=LLAMA_THREADS_NUM, |
|
n_batch=512, |
|
use_mlock=False, |
|
) |
|
|
|
print('\nInitialize model for embedding') |
|
llm_embed = Llama( |
|
model_path=LLAMA_MODEL_PATH, |
|
n_ctx=CTX_MAX, |
|
n_threads=LLAMA_THREADS_NUM, |
|
n_batch=512, |
|
embedding=True, |
|
use_mlock=False, |
|
) |
|
|
|
print( |
|
"\033[91m\033[1m" |
|
+ "\n*****USING LLAMA.CPP. POTENTIALLY SLOW.*****" |
|
+ "\033[0m\033[0m" |
|
) |
|
else: |
|
print( |
|
"\033[91m\033[1m" |
|
+ "\nLlama LLM requires package llama-cpp. Falling back to GPT-3.5-turbo." |
|
+ "\033[0m\033[0m" |
|
) |
|
LLM_MODEL = "gpt-3.5-turbo" |
|
|
|
if LLM_MODEL.startswith("gpt-4"): |
|
print( |
|
"\033[91m\033[1m" |
|
+ "\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****" |
|
+ "\033[0m\033[0m" |
|
) |
|
|
|
if LLM_MODEL.startswith("human"): |
|
print( |
|
"\033[91m\033[1m" |
|
+ "\n*****USING HUMAN INPUT*****" |
|
+ "\033[0m\033[0m" |
|
) |
|
|
|
print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m") |
|
print(f"{OBJECTIVE}") |
|
|
|
if not JOIN_EXISTING_OBJECTIVE: |
|
print("\033[93m\033[1m" + "\nInitial task:" + "\033[0m\033[0m" + f" {INITIAL_TASK}") |
|
else: |
|
print("\033[93m\033[1m" + f"\nJoining to help the objective" + "\033[0m\033[0m") |
|
|
|
|
|
openai.api_key = os.getenv("api_key") |
|
|
|
|
|
|
|
class LlamaEmbeddingFunction(EmbeddingFunction): |
|
def __init__(self): |
|
return |
|
|
|
|
|
def __call__(self, texts: Documents) -> Embeddings: |
|
embeddings = [] |
|
for t in texts: |
|
|
|
inputs = tokenizer(t, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
e = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist() |
|
embeddings.append(e) |
|
return embeddings |
|
|
|
|
|
|
|
class DefaultResultsStorage: |
|
def __init__(self): |
|
logging.getLogger('chromadb').setLevel(logging.ERROR) |
|
|
|
chroma_persist_dir = "chroma" |
|
chroma_client = chromadb.PersistentClient( |
|
settings=chromadb.config.Settings( |
|
persist_directory=chroma_persist_dir, |
|
) |
|
) |
|
|
|
metric = "cosine" |
|
|
|
embedding_function = LlamaEmbeddingFunction() |
|
|
|
|
|
self.collection = chroma_client.get_or_create_collection( |
|
name=RESULTS_STORE_NAME, |
|
metadata={"hnsw:space": metric}, |
|
embedding_function=embedding_function, |
|
) |
|
|
|
|
|
|
|
def add(self, task: Dict, result: str, result_id: str): |
|
|
|
|
|
if LLM_MODEL.startswith("human"): |
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = tokenizer(result, return_tensors="pt", max_length=512, truncation=True) |
|
outputs = model(**inputs) |
|
|
|
embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist() |
|
|
|
import requests |
|
|
|
url = "https://kenken999-php.hf.space/api/v1.php" |
|
|
|
payload = f"""model_name={embeddings}&vector_text={result}&table=products&action=insert""" |
|
headers = { |
|
'X-Auth-Token': 'admin', |
|
'Content-Type': 'application/x-www-form-urlencoded', |
|
'Cookie': 'runnerSession=muvclb78zpsdjbm7y9c3; pD1lszvk6ratOZhmmgvkp=13767810ebf0782b0b51bf72dedb63b3' |
|
} |
|
|
|
response = requests.request("POST", url, headers=headers, data=payload) |
|
|
|
print(response.text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
len(self.collection.get(ids=[result_id], include=[])["ids"]) > 0 |
|
): |
|
self.collection.update( |
|
ids=result_id, |
|
embeddings=embeddings, |
|
documents=result, |
|
metadatas={"task": task["task_name"], "result": result}, |
|
) |
|
else: |
|
self.collection.add( |
|
ids=result_id, |
|
embeddings=embeddings, |
|
documents=result, |
|
metadatas={"task": task["task_name"], "result": result}, |
|
) |
|
|
|
def query(self, query: str, top_results_num: int) -> List[dict]: |
|
count: int = self.collection.count() |
|
if count == 0: |
|
return [] |
|
results = self.collection.query( |
|
query_texts=query, |
|
n_results=min(top_results_num, count), |
|
include=["metadatas"] |
|
) |
|
return [item["task"] for item in results["metadatas"][0]] |
|
|
|
|
|
|
|
def try_weaviate(): |
|
WEAVIATE_URL = os.getenv("WEAVIATE_URL", "") |
|
WEAVIATE_USE_EMBEDDED = os.getenv("WEAVIATE_USE_EMBEDDED", "False").lower() == "true" |
|
if (WEAVIATE_URL or WEAVIATE_USE_EMBEDDED) and can_import("extensions.weaviate_storage"): |
|
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY", "") |
|
from extensions.weaviate_storage import WeaviateResultsStorage |
|
print("\nUsing results storage: " + "\033[93m\033[1m" + "Weaviate" + "\033[0m\033[0m") |
|
return WeaviateResultsStorage(OPENAI_API_KEY, WEAVIATE_URL, WEAVIATE_API_KEY, WEAVIATE_USE_EMBEDDED, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE) |
|
return None |
|
|
|
def try_pinecone(): |
|
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY", "") |
|
if PINECONE_API_KEY and can_import("extensions.pinecone_storage"): |
|
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT", "") |
|
assert ( |
|
PINECONE_ENVIRONMENT |
|
), "\033[91m\033[1m" + "PINECONE_ENVIRONMENT environment variable is missing from .env" + "\033[0m\033[0m" |
|
from extensions.pinecone_storage import PineconeResultsStorage |
|
print("\nUsing results storage: " + "\033[93m\033[1m" + "Pinecone" + "\033[0m\033[0m") |
|
return PineconeResultsStorage(OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_ENVIRONMENT, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE) |
|
return None |
|
|
|
def use_chroma(): |
|
print("\nUsing results storage: " + "\033[93m\033[1m" + "Chroma (Default)" + "\033[0m\033[0m") |
|
return DefaultResultsStorage() |
|
|
|
results_storage = try_weaviate() or try_pinecone() or use_chroma() |
|
|
|
|
|
class SingleTaskListStorage: |
|
def __init__(self): |
|
self.tasks = deque([]) |
|
self.task_id_counter = 0 |
|
|
|
def append(self, task: Dict): |
|
self.tasks.append(task) |
|
|
|
def replace(self, tasks: List[Dict]): |
|
self.tasks = deque(tasks) |
|
|
|
def popleft(self): |
|
return self.tasks.popleft() |
|
|
|
def is_empty(self): |
|
return False if self.tasks else True |
|
|
|
def next_task_id(self): |
|
self.task_id_counter += 1 |
|
return self.task_id_counter |
|
|
|
def get_task_names(self): |
|
return [t["task_name"] for t in self.tasks] |
|
|
|
|
|
|
|
tasks_storage = SingleTaskListStorage() |
|
if COOPERATIVE_MODE in ['l', 'local']: |
|
if can_import("extensions.ray_tasks"): |
|
import sys |
|
from pathlib import Path |
|
|
|
sys.path.append(str(Path(__file__).resolve().parent)) |
|
from extensions.ray_tasks import CooperativeTaskListStorage |
|
|
|
tasks_storage = CooperativeTaskListStorage(OBJECTIVE) |
|
print("\nReplacing tasks storage: " + "\033[93m\033[1m" + "Ray" + "\033[0m\033[0m") |
|
elif COOPERATIVE_MODE in ['d', 'distributed']: |
|
pass |
|
|
|
|
|
def limit_tokens_from_string(string: str, model: str, limit: int) -> str: |
|
"""Limits the string to a number of tokens (estimated).""" |
|
|
|
try: |
|
encoding = tiktoken.encoding_for_model(model) |
|
except: |
|
encoding = tiktoken.encoding_for_model('gpt2') |
|
|
|
encoded = encoding.encode(string) |
|
|
|
return encoding.decode(encoded[:limit]) |
|
|
|
|
|
def openai_call( |
|
prompt: str, |
|
model: str = LLM_MODEL, |
|
temperature: float = OPENAI_TEMPERATURE, |
|
max_tokens: int = 100, |
|
): |
|
while True: |
|
print("--------------------------------------------------------------------------------------") |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": "prompt" |
|
} |
|
], |
|
print(prompt) |
|
|
|
client = Groq(api_key=os.getenv("api_key")) |
|
res = "" |
|
print("--------------------------------------------------------------------------------------") |
|
print(prompt) |
|
completion = client.chat.completions.create( |
|
model="llama3-70b-8192", |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": prompt |
|
} |
|
], |
|
temperature=1, |
|
max_tokens=4024, |
|
top_p=1, |
|
stream=True, |
|
stop=None, |
|
) |
|
for chunk in completion: |
|
|
|
|
|
res += chunk.choices[0].delta.content or "" |
|
return res |
|
|
|
while True: |
|
|
|
|
|
try: |
|
if model.lower().startswith("llama"): |
|
result = llm(prompt[:CTX_MAX], |
|
stop=["### Human"], |
|
echo=False, |
|
temperature=0.2, |
|
top_k=40, |
|
top_p=0.95, |
|
repeat_penalty=1.05, |
|
max_tokens=200) |
|
|
|
|
|
|
|
for chunk in completion: |
|
print(chunk.choices[0].delta.content or "", end="") |
|
return result['choices'][0]['text'].strip() |
|
elif model.lower().startswith("human"): |
|
return user_input_await(prompt) |
|
elif not model.lower().startswith("gpt-"): |
|
|
|
response = openai.Completion.create( |
|
engine=model, |
|
prompt=prompt, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
top_p=1, |
|
frequency_penalty=0, |
|
presence_penalty=0, |
|
) |
|
return response.choices[0].text.strip() |
|
else: |
|
|
|
|
|
|
|
trimmed_prompt = limit_tokens_from_string(prompt, model, 4000 - max_tokens) |
|
|
|
|
|
messages = [{"role": "system", "content": trimmed_prompt}] |
|
response = openai.ChatCompletion.create( |
|
model=model, |
|
messages=messages, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
n=1, |
|
stop=None, |
|
) |
|
return response.choices[0].message.content.strip() |
|
except openai.error.RateLimitError: |
|
print( |
|
" *** The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again. ***" |
|
) |
|
time.sleep(10) |
|
except openai.error.Timeout: |
|
print( |
|
" *** OpenAI API timeout occurred. Waiting 10 seconds and trying again. ***" |
|
) |
|
time.sleep(10) |
|
except openai.error.APIError: |
|
print( |
|
" *** OpenAI API error occurred. Waiting 10 seconds and trying again. ***" |
|
) |
|
time.sleep(10) |
|
except openai.error.APIConnectionError: |
|
print( |
|
" *** OpenAI API connection error occurred. Check your network settings, proxy configuration, SSL certificates, or firewall rules. Waiting 10 seconds and trying again. ***" |
|
) |
|
time.sleep(10) |
|
except openai.error.InvalidRequestError: |
|
print( |
|
" *** OpenAI API invalid request. Check the documentation for the specific API method you are calling and make sure you are sending valid and complete parameters. Waiting 10 seconds and trying again. ***" |
|
) |
|
time.sleep(10) |
|
except openai.error.ServiceUnavailableError: |
|
print( |
|
" *** OpenAI API service unavailable. Waiting 10 seconds and trying again. ***" |
|
) |
|
time.sleep(10) |
|
else: |
|
break |
|
|
|
|
|
def task_creation_agent( |
|
objective: str, result: Dict, task_description: str, task_list: List[str] |
|
): |
|
prompt = f""" |
|
You are to use the result from an execution agent to create new tasks with the following objective: {objective}. |
|
The last completed task has the result: \n{result["data"]} |
|
This result was based on this task description: {task_description}.\n""" |
|
|
|
if task_list: |
|
prompt += f"These are incomplete tasks: {', '.join(task_list)}\n" |
|
prompt += "Based on the result, return a list of tasks to be completed in order to meet the objective. " |
|
if task_list: |
|
prompt += "These new tasks must not overlap with incomplete tasks. " |
|
|
|
prompt += """ |
|
Return one task per line in your response. The result must be a numbered list in the format: |
|
|
|
#. First task |
|
#. Second task |
|
|
|
The number of each entry must be followed by a period. If your list is empty, write "There are no tasks to add at this time." |
|
Unless your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output.""" |
|
|
|
print(f'\n*****TASK CREATION AGENT PROMPT****\n{prompt}\n') |
|
response = openai_call(prompt, max_tokens=4000) |
|
print(f'\n****TASK CREATION AGENT RESPONSE****\n{response}\n') |
|
new_tasks = response.split('\n') |
|
new_tasks_list = [] |
|
for task_string in new_tasks: |
|
task_parts = task_string.strip().split(".", 1) |
|
if len(task_parts) == 2: |
|
task_id = ''.join(s for s in task_parts[0] if s.isnumeric()) |
|
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip() |
|
if task_name.strip() and task_id.isnumeric(): |
|
new_tasks_list.append(task_name) |
|
|
|
|
|
out = [{"task_name": task_name} for task_name in new_tasks_list] |
|
return out |
|
|
|
|
|
def prioritization_agent(): |
|
task_names = tasks_storage.get_task_names() |
|
bullet_string = '\n' |
|
|
|
prompt = f""" |
|
You are tasked with prioritizing the following tasks: {bullet_string + bullet_string.join(task_names)} |
|
Consider the ultimate objective of your team: {OBJECTIVE}. |
|
Tasks should be sorted from highest to lowest priority, where higher-priority tasks are those that act as pre-requisites or are more essential for meeting the objective. |
|
Do not remove any tasks. Return the ranked tasks as a numbered list in the format: |
|
|
|
#. First task |
|
#. Second task |
|
|
|
The entries must be consecutively numbered, starting with 1. The number of each entry must be followed by a period. |
|
Do not include any headers before your ranked list or follow your list with any other output.""" |
|
|
|
print(f'\n****TASK PRIORITIZATION AGENT PROMPT****\n{prompt}\n') |
|
response = openai_call(prompt, max_tokens=2000) |
|
print(f'\n****TASK PRIORITIZATION AGENT RESPONSE****\n{response}\n') |
|
if not response: |
|
print('Received empty response from priotritization agent. Keeping task list unchanged.') |
|
return |
|
new_tasks = response.split("\n") if "\n" in response else [response] |
|
new_tasks_list = [] |
|
for task_string in new_tasks: |
|
task_parts = task_string.strip().split(".", 1) |
|
if len(task_parts) == 2: |
|
task_id = ''.join(s for s in task_parts[0] if s.isnumeric()) |
|
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip() |
|
if task_name.strip(): |
|
new_tasks_list.append({"task_id": task_id, "task_name": task_name}) |
|
|
|
return new_tasks_list |
|
|
|
|
|
|
|
def execution_agent(objective: str, task: str) -> str: |
|
""" |
|
Executes a task based on the given objective and previous context. |
|
|
|
Args: |
|
objective (str): The objective or goal for the AI to perform the task. |
|
task (str): The task to be executed by the AI. |
|
|
|
Returns: |
|
str: The response generated by the AI for the given task. |
|
|
|
""" |
|
|
|
context = context_agent(query=objective, top_results_num=5) |
|
|
|
|
|
|
|
prompt = f'Perform one task based on the following objective: {objective}.\n' |
|
if context: |
|
prompt += 'Take into account these previously completed tasks:' + '\n'.join(context) |
|
prompt += f'\nYour task: {task}\nResponse:' |
|
return openai_call(prompt, max_tokens=2000) |
|
|
|
|
|
|
|
def context_agent(query: str, top_results_num: int): |
|
""" |
|
Retrieves context for a given query from an index of tasks. |
|
|
|
Args: |
|
query (str): The query or objective for retrieving context. |
|
top_results_num (int): The number of top results to retrieve. |
|
|
|
Returns: |
|
list: A list of tasks as context for the given query, sorted by relevance. |
|
|
|
""" |
|
results = results_storage.query(query=query, top_results_num=top_results_num) |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
if not JOIN_EXISTING_OBJECTIVE: |
|
initial_task = { |
|
"task_id": tasks_storage.next_task_id(), |
|
"task_name": INITIAL_TASK |
|
} |
|
tasks_storage.append(initial_task) |
|
|
|
import os |
|
def main(): |
|
loop = True |
|
webhook_url = os.getenv("chat_url") |
|
|
|
loop = True |
|
result_all = "" |
|
count = 0 |
|
thread_name = send_google_chat_card(webhook_url,OBJECTIVE,OBJECTIVE+"\r\n"+result_all,"タスク定義","タスク定義") |
|
while loop: |
|
result_all = "" |
|
|
|
if not tasks_storage.is_empty(): |
|
|
|
|
|
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") |
|
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") |
|
for t in tasks_storage.get_task_names(): |
|
print(" • " + str(t)) |
|
|
|
result_all += str(t)+"\r\n" |
|
send_google_chat_card_thread(webhook_url,OBJECTIVE,OBJECTIVE+"\r\n"+result_all,"タスク定義","タスク定義",thread_name) |
|
|
|
|
|
task = tasks_storage.popleft() |
|
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") |
|
|
|
print(str(task["task_name"])) |
|
|
|
result_all += str(task["task_name"])+"\r\n" |
|
send_google_chat_card_thread(webhook_url,OBJECTIVE,OBJECTIVE+"\r\n"+result_all,"タスク定義","タスク定義",thread_name) |
|
|
|
|
|
|
|
result = execution_agent(OBJECTIVE+" 回答は日本語でして下さい", str(task["task_name"])) |
|
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") |
|
|
|
print(result) |
|
|
|
result_all += result+"\r\n" |
|
send_google_chat_card_thread(webhook_url,OBJECTIVE,OBJECTIVE+"\r\n"+result_all,"タスク定義","タスク定義",thread_name) |
|
|
|
|
|
|
|
|
|
|
|
enriched_result = { |
|
"data": result |
|
} |
|
|
|
|
|
vector = enriched_result["data"] |
|
|
|
result_id = f"result_{task['task_id']}" |
|
|
|
results_storage.add(task, result, result_id) |
|
|
|
|
|
|
|
new_tasks = task_creation_agent( |
|
OBJECTIVE, |
|
enriched_result, |
|
task["task_name"], |
|
tasks_storage.get_task_names(), |
|
) |
|
|
|
print('Adding new tasks to task_storage') |
|
for new_task in new_tasks: |
|
new_task.update({"task_id": tasks_storage.next_task_id()}) |
|
print(str(new_task)) |
|
tasks_storage.append(new_task) |
|
|
|
if not JOIN_EXISTING_OBJECTIVE: |
|
prioritized_tasks = prioritization_agent() |
|
if prioritized_tasks: |
|
tasks_storage.replace(prioritized_tasks) |
|
|
|
|
|
time.sleep(3) |
|
count += 1 |
|
if count > 5: |
|
loop = False |
|
else: |
|
print('Done.') |
|
loop = False |
|
return result_all |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
def completion(message: str, history=None, c=None, d=None, prompt="あなたは日本語の優秀なアシスタントです。"): |
|
OBJECTIVE = message |
|
loop = True |
|
result_all = "" |
|
count = 0 |
|
while loop: |
|
result_all = "" |
|
|
|
if not tasks_storage.is_empty(): |
|
|
|
|
|
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") |
|
for t in tasks_storage.get_task_names(): |
|
print(" • " + str(t)) |
|
yield str(t) |
|
result_all += str(t)+"\r\n" |
|
|
|
|
|
task = tasks_storage.popleft() |
|
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") |
|
yield "\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m" |
|
print(str(task["task_name"])) |
|
yield str(task["task_name"]) |
|
result_all += str(task["task_name"])+"\r\n" |
|
|
|
|
|
result = execution_agent(OBJECTIVE, str(task["task_name"])) |
|
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") |
|
yield "\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m" |
|
print(result) |
|
yield result |
|
result_all += result+"\r\n" |
|
yield result_all |
|
|
|
|
|
|
|
enriched_result = { |
|
"data": result |
|
} |
|
|
|
|
|
vector = enriched_result["data"] |
|
|
|
result_id = f"result_{task['task_id']}" |
|
|
|
results_storage.add(task, result, result_id) |
|
|
|
|
|
|
|
new_tasks = task_creation_agent( |
|
OBJECTIVE, |
|
enriched_result, |
|
task["task_name"], |
|
tasks_storage.get_task_names(), |
|
) |
|
|
|
print('Adding new tasks to task_storage') |
|
for new_task in new_tasks: |
|
new_task.update({"task_id": tasks_storage.next_task_id()}) |
|
print(str(new_task)) |
|
tasks_storage.append(new_task) |
|
|
|
if not JOIN_EXISTING_OBJECTIVE: |
|
prioritized_tasks = prioritization_agent() |
|
if prioritized_tasks: |
|
try: |
|
tasks_storage.replace(prioritized_tasks) |
|
except Exception as e: |
|
print(f"Error during replace: {e}") |
|
pass |
|
|
|
|
|
time.sleep(1) |
|
count += 1 |
|
if count > 2: |
|
loop = False |
|
else: |
|
print('Done.') |
|
loop = False |
|
return result_all |
|
|
|
|
|
|
|
with gr.Blocks(fill_height=True, css=css) as gradio_babyagi: |
|
|
|
|
|
gr.ChatInterface( |
|
fn=completion, |
|
chatbot=chatbot2, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion( |
|
label="⚙️ Parameters", open=False, render=False |
|
), |
|
additional_inputs=[ |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.95, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=512, |
|
label="Max new tokens", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["HTMLのサンプルを作成して"], |
|
[ |
|
"CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml" |
|
], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
|
|
def test_postgres(): |
|
|
|
DATABASE_URL = os.getenv("postgre_url") |
|
|
|
|
|
db = ProductDatabase(DATABASE_URL) |
|
|
|
|
|
db.connect() |
|
|
|
try: |
|
|
|
products = db.fetch_data() |
|
print("Fetched products:") |
|
for product in products: |
|
print(product) |
|
|
|
|
|
for product in products: |
|
product_id = product[0] |
|
print(product_id) |
|
|
|
|
|
|
|
|
|
finally: |
|
|
|
db.close() |