Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import json | |
import os | |
class AestheticScorer(nn.Module): | |
def __init__(self, input_size=0, use_activation=False, dropout=0.2, config=None, hidden_dim=1024, reduce_dims=False, output_activation=None): | |
super().__init__() | |
self.config = { | |
"input_size": input_size, | |
"use_activation": use_activation, | |
"dropout": dropout, | |
"hidden_dim": hidden_dim, | |
"reduce_dims": reduce_dims, | |
"output_activation": output_activation | |
} | |
if config != None: | |
self.config.update(config) | |
layers = [ | |
nn.Linear(self.config["input_size"], self.config["hidden_dim"]), | |
nn.ReLU() if self.config["use_activation"] else None, | |
nn.Dropout(self.config["dropout"]), | |
nn.Linear(self.config["hidden_dim"], round(self.config["hidden_dim"] / (2 if reduce_dims else 1))), | |
nn.ReLU() if self.config["use_activation"] else None, | |
nn.Dropout(self.config["dropout"]), | |
nn.Linear(round(self.config["hidden_dim"] / (2 if reduce_dims else 1)), round(self.config["hidden_dim"] / (4 if reduce_dims else 1))), | |
nn.ReLU() if self.config["use_activation"] else None, | |
nn.Dropout(self.config["dropout"]), | |
nn.Linear(round(self.config["hidden_dim"] / (4 if reduce_dims else 1)), round(self.config["hidden_dim"] / (8 if reduce_dims else 1))), | |
nn.ReLU() if self.config["use_activation"] else None, | |
nn.Linear(round(self.config["hidden_dim"] / (8 if reduce_dims else 1)), 1), | |
] | |
if self.config["output_activation"] == "sigmoid": | |
layers.append( | |
nn.Sigmoid() | |
) | |
layers = [ x for x in layers if x is not None] | |
self.layers = nn.Sequential( | |
*layers | |
) | |
def forward(self, x): | |
if self.config["output_activation"] == "sigmoid": | |
upper, lower = 10, 1 | |
scale = upper - lower | |
return (self.layers(x) * scale) + lower | |
else: | |
return self.layers(x) | |
def save(self, save_name): | |
split_name = os.path.splitext(save_name) | |
with open(f"{split_name[0]}.config", "w") as outfile: | |
outfile.write(json.dumps(self.config, indent=4)) | |
for i in range(6): # saving sometiles fails, so retry 5 times, might be windows issue | |
try: | |
torch.save(self.state_dict(), save_name) | |
break | |
except RuntimeError as e: | |
# check if error contains string "File" | |
if "cannot be opened" in str(e) and i < 5: | |
print("Model save failed, retrying...") | |
else: | |
raise e | |
def preprocess(embeddings): | |
return embeddings / embeddings.norm(p=2, dim=-1, keepdim=True) | |
def load_model(weight_path, device='cuda' if torch.cuda.is_available() else 'cpu'): | |
split_path = os.path.splitext(weight_path) | |
with open(f"{split_path[0]}.config", "r") as config_file: | |
config = json.load(config_file) | |
model = AestheticScorer(config=config) | |
model.load_state_dict(torch.load(weight_path, map_location=device)) | |
model.eval() | |
return model | |