aesthetics-scorer / model.py
kenjiqq's picture
add demo
b732a2c
raw
history blame
3.31 kB
import torch
import torch.nn as nn
import json
import os
class AestheticScorer(nn.Module):
def __init__(self, input_size=0, use_activation=False, dropout=0.2, config=None, hidden_dim=1024, reduce_dims=False, output_activation=None):
super().__init__()
self.config = {
"input_size": input_size,
"use_activation": use_activation,
"dropout": dropout,
"hidden_dim": hidden_dim,
"reduce_dims": reduce_dims,
"output_activation": output_activation
}
if config != None:
self.config.update(config)
layers = [
nn.Linear(self.config["input_size"], self.config["hidden_dim"]),
nn.ReLU() if self.config["use_activation"] else None,
nn.Dropout(self.config["dropout"]),
nn.Linear(self.config["hidden_dim"], round(self.config["hidden_dim"] / (2 if reduce_dims else 1))),
nn.ReLU() if self.config["use_activation"] else None,
nn.Dropout(self.config["dropout"]),
nn.Linear(round(self.config["hidden_dim"] / (2 if reduce_dims else 1)), round(self.config["hidden_dim"] / (4 if reduce_dims else 1))),
nn.ReLU() if self.config["use_activation"] else None,
nn.Dropout(self.config["dropout"]),
nn.Linear(round(self.config["hidden_dim"] / (4 if reduce_dims else 1)), round(self.config["hidden_dim"] / (8 if reduce_dims else 1))),
nn.ReLU() if self.config["use_activation"] else None,
nn.Linear(round(self.config["hidden_dim"] / (8 if reduce_dims else 1)), 1),
]
if self.config["output_activation"] == "sigmoid":
layers.append(
nn.Sigmoid()
)
layers = [ x for x in layers if x is not None]
self.layers = nn.Sequential(
*layers
)
def forward(self, x):
if self.config["output_activation"] == "sigmoid":
upper, lower = 10, 1
scale = upper - lower
return (self.layers(x) * scale) + lower
else:
return self.layers(x)
def save(self, save_name):
split_name = os.path.splitext(save_name)
with open(f"{split_name[0]}.config", "w") as outfile:
outfile.write(json.dumps(self.config, indent=4))
for i in range(6): # saving sometiles fails, so retry 5 times, might be windows issue
try:
torch.save(self.state_dict(), save_name)
break
except RuntimeError as e:
# check if error contains string "File"
if "cannot be opened" in str(e) and i < 5:
print("Model save failed, retrying...")
else:
raise e
def preprocess(embeddings):
return embeddings / embeddings.norm(p=2, dim=-1, keepdim=True)
def load_model(weight_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
split_path = os.path.splitext(weight_path)
with open(f"{split_path[0]}.config", "r") as config_file:
config = json.load(config_file)
model = AestheticScorer(config=config)
model.load_state_dict(torch.load(weight_path, map_location=device))
model.eval()
return model