Spaces:
Paused
Paused
File size: 18,034 Bytes
dbd2ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
### Client APIs
A Gradio API and an OpenAI-compliant API are supported. One can also use `curl` to some extent for basic API.
##### Gradio Client API
`generate.py` by default runs a gradio server, which also gives access to client API using gradio client. One can use it with h2oGPT, or independently of h2oGPT repository by installing an env:
```bash
conda create -n gradioclient -y
conda activate gradioclient
conda install python=3.10 -y
pip install gradio_client
```
then running client code:
```python
from gradio_client import Client
import ast
HOST_URL = "http://localhost:7860"
client = Client(HOST_URL)
# string of dict for input
kwargs = dict(instruction_nochat='Who are you?')
res = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api')
# string of dict for output
response = ast.literal_eval(res)['response']
print(response)
```
For other ways to use gradio client, see example [test code](../client_test.py) or other tests in our [tests](https://github.com/h2oai/h2ogpt/blob/main/tests/test_client_calls.py).
One can also stream the response. Here is a complete example code of streaming to console each updated text fragment so appears to stream in console:
```python
from gradio_client import Client
import ast
import time
HOST = 'http://localhost:7860'
client = Client(HOST)
api_name = '/submit_nochat_api'
prompt = "Who are you?"
kwargs = dict(instruction_nochat=prompt, stream_output=True)
job = client.submit(str(dict(kwargs)), api_name=api_name)
text_old = ''
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res_dict = ast.literal_eval(res)
text = res_dict['response']
new_text = text[len(text_old):]
if new_text:
print(new_text, end='', flush=True)
text_old = text
time.sleep(0.01)
# handle case if never got streaming response and already done
res_final = job.outputs()
if len(res_final) > 0:
res = res_final[-1]
res_dict = ast.literal_eval(res)
text = res_dict['response']
new_text = text[len(text_old):]
print(new_text)
```
Any element in [gradio_runner.py](../gradio_runner.py) with `api_name` defined can be accessed via the gradio client.
The below is an example client code, which handles persistence of state when doing multiple queries, or avoids persistence to avoid issues when server goes up and down for a fixed client. Choose `HOST` to be the h2oGPT server, and as gradio client use function calls `answer_question_using_context` and `summarize` that handle question-answer or summarization using LangChain backend. One can choose h2oGPT server to have `--async_output=True` and `--num_async=10` (or some optimal value) to enable full parallel summarization when the h2oGPT server uses `--inference_server` that points to a text-generation inference server, to allow for high tokens/sec.
```python
HOST = "localhost:7860" # choose
import ast
import os
import traceback
from enum import Enum
from typing import Union
from gradio_client.client import Job
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
from gradio_client import Client
class GradioClient(Client):
"""
Parent class of gradio client
To handle automatically refreshing client if detect gradio server changed
"""
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
super().__init__(*args, **kwargs)
self.server_hash = self.get_server_hash()
def get_server_hash(self):
"""
Get server hash using super without any refresh action triggered
Returns: git hash of gradio server
"""
return super().submit(api_name='/system_hash').result()
def refresh_client_if_should(self):
# get current hash in order to update api_name -> fn_index map in case gradio server changed
# FIXME: Could add cli api as hash
server_hash = self.get_server_hash()
if self.server_hash != server_hash:
self.refresh_client()
self.server_hash = server_hash
else:
self.reset_session()
def refresh_client(self):
"""
Ensure every client call is independent
Also ensure map between api_name and fn_index is updated in case server changed (e.g. restarted with new code)
Returns:
"""
# need session hash to be new every time, to avoid "generator already executing"
self.reset_session()
client = Client(*self.args, **self.kwargs)
for k, v in client.__dict__.items():
setattr(self, k, v)
def submit(
self,
*args,
api_name=None,
fn_index=None,
result_callbacks=None,
) -> Job:
# Note predict calls submit
try:
self.refresh_client_if_should()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
except Exception as e:
print("Hit e=%s" % str(e), flush=True)
# force reconfig in case only that
self.refresh_client()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
# see if immediately failed
e = job.future._exception
if e is not None:
print("GR job failed: %s %s" % (str(e), ''.join(traceback.format_tb(e.__traceback__))), flush=True)
# force reconfig in case only that
self.refresh_client()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
e2 = job.future._exception
if e2 is not None:
print("GR job failed again: %s\n%s" % (str(e2), ''.join(traceback.format_tb(e2.__traceback__))),
flush=True)
return job
from .settings import settings
# TODO use settings.llm_api_key for auth
client = GradioClient(settings.llm_address)
def _call_h2o_gpt_api(prompt: str) -> str:
# don't specify prompt_type etc., use whatever endpoint setup
kwargs = dict(
stream_output=False,
max_time=360,
instruction_nochat=prompt,
)
return client.predict(str(kwargs), api_name='/submit_nochat_api')
prompt_template = '''
"""
{context}
"""
{question}
'''
def answer_question_using_context(question: str, context: str) -> str:
prompt = prompt_template.format(context=context, question=question)
answer = _call_h2o_gpt_api(prompt)
return ast.literal_eval(answer)['response']
class LangChainAction(Enum):
"""LangChain action"""
QUERY = "Query"
SUMMARIZE_MAP = "Summarize"
def query(instruction: str = None,
text: str = None,
file: str = None,
url: str = None,
top_k_docs: int = 4,
pre_prompt_query: str = None,
prompt_query: str = None,
asserts: bool = True) -> str:
"""
Query using h2oGPT
"""
return query_or_summarize(instruction=instruction,
text=text,
file=file,
url=url,
langchain_action=LangChainAction.QUERY.value,
top_k_docs=top_k_docs,
pre_prompt_query=pre_prompt_query,
prompt_query=prompt_query,
asserts=asserts)
def summarize(text: str = None,
file: str = None,
url: str = None,
top_k_docs: int = 4,
pre_prompt_summary: str = None,
prompt_summary: str = None,
asserts: bool = True) -> str:
"""
Summarize using h2oGPT
"""
return query_or_summarize(text=text,
file=file,
url=url,
langchain_action=LangChainAction.SUMMARIZE_MAP.value,
top_k_docs=top_k_docs,
pre_prompt_summary=pre_prompt_summary,
prompt_summary=prompt_summary,
asserts=asserts)
def query_or_summarize(instruction: str = '',
text: Union[list[str], str] = None,
file: Union[list[str], str] = None,
url: Union[list[str], str] = None,
langchain_action: str = None,
embed: str = True,
top_k_docs: int = 4,
pre_prompt_query: str = None,
prompt_query: str = None,
pre_prompt_summary: str = None,
prompt_summary: str = None,
asserts: bool = True) -> str:
"""
Query or Summarize using h2oGPT
Args:
instruction: Query
For query, prompt template is:
"{pre_prompt_query}\"\"\"
{content}
\"\"\"\n{prompt_query}{instruction}"
If added to summarization, prompt template is
"{pre_prompt_summary}:\"\"\"
{content}
\"\"\"\n, Focusing on {instruction}, {prompt_summary}"
text: textual content or list of such contents
file: a local file to upload or files to upload
url: a url to give or urls to use
embed: whether to embed content uploaded
langchain_action: Action to take, "Query" or "Summarize"
top_k_docs: number of document parts.
When doing query, number of chunks
When doing summarization, not related to vectorDB chunks that are not used
E.g. if PDF, then number of pages
pre_prompt_query: Prompt that comes before document part
prompt_query: Prompt that comes after document part
pre_prompt_summary: Prompt that comes before document part
None makes h2oGPT internally use its defaults
E.g. "In order to write a concise single-paragraph or bulleted list summary, pay attention to the following text"
prompt_summary: Prompt that comes after document part
None makes h2oGPT internally use its defaults
E.g. "Using only the text above, write a condensed and concise summary of key results (preferably as bullet points):\n"
i.e. for some internal document part fstring, the template looks like:
template = "%s:
\"\"\"
%s
\"\"\"\n%s" % (pre_prompt_summary, fstring, prompt_summary)
asserts: whether to do asserts to ensure handling is correct
Returns: summary: str
"""
assert text or file or url, "Need to pass either text, file, or url"
# get persistent client
client_persist = Client(*client.args, **client.kwargs, serialize=True)
# chunking not used here
chunk = True
chunk_size = 512
# MyData specifies scratch space, only persisted for this individual client call
langchain_mode = 'MyData'
loaders = tuple([None, None, None, None])
doc_options = tuple([langchain_mode, chunk, chunk_size, embed])
if text:
res = client_persist.predict(text,
*doc_options,
*loaders,
api_name='/add_text')
if asserts:
assert res[0] is None
assert res[1] == langchain_mode
assert 'user_paste' in res[2]
assert res[3] == ''
if file:
# upload file(s). Can be list or single file
# after below call, "file" replaced with remote location of file
_, file = client_persist.predict(file, api_name='/upload_api')
res = client_persist.predict(file,
*doc_options,
*loaders,
api_name='/add_file_api')
if asserts:
assert res[0] is None
assert res[1] == langchain_mode
assert os.path.basename(file) in res[2]
assert res[3] == ''
if url:
res = client_persist.predict(url,
*doc_options,
*loaders,
api_name='/add_url')
if asserts:
assert res[0] is None
assert res[1] == langchain_mode
assert url in res[2]
assert res[3] == ''
if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
# ensure, so full asyncio mode used when gradio connected to TGI server
stream_output = False
else:
# FIXME: should stream
stream_output = False
# ask for summary, need to use same client if using MyData
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
kwargs = dict(instruction=instruction,
langchain_mode=langchain_mode,
langchain_action=langchain_action, # uses full document, not vectorDB chunks
top_k_docs=top_k_docs,
stream_output=stream_output,
document_subset='Relevant',
document_choice='All',
max_new_tokens=256,
max_time=360,
do_sample=False,
pre_prompt_query=pre_prompt_query,
prompt_query=prompt_query,
pre_prompt_summary=pre_prompt_summary,
prompt_summary=prompt_summary,
)
# get result
res = client_persist.predict(
str(dict(kwargs)),
api_name=api_name,
)
res = ast.literal_eval(res)
response = res['response']
sources = res['sources']
if api_name == '/submit_nochat_api':
scores_out = [x[0] for x in sources]
texts_out = [x[1] for x in sources]
if asserts and text and not file and not url:
assert text == texts_out
assert len(text) == len(scores_out)
else:
if asserts:
# only pass back file link etc. if not nochat
if text:
assert 'user_paste' in sources
if file:
assert file in sources
if url:
assert url in sources
return response
```
See tests in https://github.com/h2oai/h2ogpt/blob/main/tests/test_client_calls.py#L678-L1036 that this code is based upon.
##### OpenAI Python Client Library
An OpenAI compliant client is available. Refer the [README](../client/README.md) for more details.
##### Curl Client API
As long as objects within the `gradio_runner.py` for a given api_name are for a function without `gr.State()` objects, then curl can work. Full `curl` capability is not supported in Gradio [yet](https://github.com/gradio-app/gradio/issues/4932).
For example, for a server launched as:
```bash
python generate.py --base_model=TheBloke/Llama-2-7b-Chat-GPTQ --load_gptq="model" --use_safetensors=True --prompt_type=llama2 --save_dir=fooasdf --system_prompt='auto'
```
one can use the `submit_nochat_plain_api` that has no `state` objects to perform chat via `curl` by doing:
```bash
curl 127.0.0.1:7860/api/submit_nochat_plain_api -X POST -d '{"data": ["{\"instruction_nochat\": \"Who are you?\"}"]}' -H 'Content-Type: application/json'
```
and get back for a 7B LLaMA2-chat GPTQ model:
`{"data":["{'response': \" Hello! I'm just an AI assistant designed to provide helpful and informative responses to your questions. My purpose is to assist and provide accurate information to the best of my abilities, while adhering to ethical and moral guidelines. I am not capable of providing personal opinions or engaging in discussions that promote harmful or offensive content. My goal is to be a positive and respectful presence in your interactions with me. Is there anything else I can help you with?\", 'sources': '', 'save_dict': {'prompt': \"<s>[INST] <<SYS>>\\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\\n\\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\\n<</SYS>>\\n\\nWho are you? [/INST]\", 'output': \" Hello! I'm just an AI assistant designed to provide helpful and informative responses to your questions. My purpose is to assist and provide accurate information to the best of my abilities, while adhering to ethical and moral guidelines. I am not capable of providing personal opinions or engaging in discussions that promote harmful or offensive content. My goal is to be a positive and respectful presence in your interactions with me. Is there anything else I can help you with?\", 'base_model': 'TheBloke/Llama-2-7b-Chat-GPTQ', 'save_dir': 'fooasdf', 'where_from': 'evaluate_False', 'extra_dict': {'num_beams': 1, 'do_sample': False, 'repetition_penalty': 1.07, 'num_return_sequences': 1, 'renormalize_logits': True, 'remove_invalid_values': True, 'use_cache': True, 'eos_token_id': 2, 'bos_token_id': 1, 'num_prompt_tokens': 5, 't_generate': 9.243812322616577, 'ntokens': 120, 'tokens_persecond': 12.981605669647344}, 'error': None, 'extra': None}}"],"is_generating":true,"duration":39.33809685707092,"average_duration":39.33809685707092}`
This contains the full dictionary of `data` from `curl` operation as well is the data contents that are a string of a dictionary like when using the API `submit_nochat_api` for Gradio client. This inner string of a dictionary can be parsed as a literal python string to get keys `response`, `source`, `save_dict`, where `save_dict` contains meta data about the query such as generation hyperparameters, tokens generated, etc.
|