File size: 7,501 Bytes
dbd2ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import copy
import torch

from evaluate_params import eval_func_param_names
from gen import get_score_model, get_model, evaluate, check_locals
from prompter import non_hf_types
from utils import clear_torch_cache, NullContext, get_kwargs


def run_cli(  # for local function:
        base_model=None, lora_weights=None, inference_server=None,
        debug=None,
        examples=None, memory_restriction_level=None,
        # for get_model:
        score_model=None, load_8bit=None, load_4bit=None, low_bit_mode=None, load_half=None,
        load_gptq=None, load_exllama=None, use_safetensors=None, revision=None,
        use_gpu_id=None, tokenizer_base_model=None,
        gpu_id=None, n_jobs=None, local_files_only=None, resume_download=None, use_auth_token=None,
        trust_remote_code=None, offload_folder=None, rope_scaling=None, max_seq_len=None, compile_model=None,
        llamacpp_dict=None,
        # for some evaluate args
        stream_output=None, async_output=None, num_async=None,
        prompt_type=None, prompt_dict=None, system_prompt=None,
        temperature=None, top_p=None, top_k=None, num_beams=None,
        max_new_tokens=None, min_new_tokens=None, early_stopping=None, max_time=None, repetition_penalty=None,
        num_return_sequences=None, do_sample=None, chat=None,
        langchain_mode=None, langchain_action=None, langchain_agents=None,
        document_subset=None, document_choice=None,
        top_k_docs=None, chunk=None, chunk_size=None,
        pre_prompt_query=None, prompt_query=None,
        pre_prompt_summary=None, prompt_summary=None,
        image_loaders=None,
        pdf_loaders=None,
        url_loaders=None,
        jq_schema=None,
        visible_models=None,
        h2ogpt_key=None,
        add_search_to_context=None,
        chat_conversation=None,
        text_context_list=None,
        docs_ordering_type=None,
        min_max_new_tokens=None,
        # for evaluate kwargs
        captions_model=None,
        caption_loader=None,
        doctr_loader=None,
        pix2struct_loader=None,
        image_loaders_options0=None,
        pdf_loaders_options0=None,
        url_loaders_options0=None,
        jq_schema0=None,
        keep_sources_in_context=None,
        src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None,
        model_state0=None,
        max_max_new_tokens=None,
        is_public=None,
        max_max_time=None,
        raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None,
        my_db_state0=None, selection_docs_state0=None, dbs=None, langchain_modes=None, langchain_mode_paths=None,
        detect_user_path_changes_every_query=None,
        use_openai_embedding=None, use_openai_model=None,
        hf_embedding_model=None, migrate_embedding_model=None, auto_migrate_db=None,
        cut_distance=None,
        answer_with_sources=None,
        append_sources_to_answer=None,
        show_accordions=None,
        top_k_docs_max_show=None,
        show_link_in_sources=None,
        add_chat_history_to_context=None,
        context=None, iinput=None,
        db_type=None, first_para=None, text_limit=None, verbose=None, cli=None,
        use_cache=None,
        auto_reduce_chunks=None, max_chunks=None, headsize=None,
        model_lock=None, force_langchain_evaluate=None,
        model_state_none=None,
        # unique to this function:
        cli_loop=None,
):
    # avoid noisy command line outputs
    import warnings
    warnings.filterwarnings("ignore")
    import logging
    logging.getLogger("torch").setLevel(logging.ERROR)
    logging.getLogger("transformers").setLevel(logging.ERROR)

    check_locals(**locals())

    score_model = ""  # FIXME: For now, so user doesn't have to pass
    n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
    device = 'cpu' if n_gpus == 0 else 'cuda'
    context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device

    with context_class(device):
        from functools import partial

        # get score model
        smodel, stokenizer, sdevice = get_score_model(reward_type=True,
                                                      **get_kwargs(get_score_model, exclude_names=['reward_type'],
                                                                   **locals()))

        model, tokenizer, device = get_model(reward_type=False,
                                             **get_kwargs(get_model, exclude_names=['reward_type'], **locals()))
        model_dict = dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights,
                          inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict,
                          visible_models=None, h2ogpt_key=None)
        model_state = dict(model=model, tokenizer=tokenizer, device=device)
        model_state.update(model_dict)
        requests_state0 = {}
        fun = partial(evaluate, model_state, my_db_state0, selection_docs_state0, requests_state0,
                      **get_kwargs(evaluate, exclude_names=['model_state',
                                                            'my_db_state',
                                                            'selection_docs_state',
                                                            'requests_state'] + eval_func_param_names,
                                   **locals()))

        example1 = examples[-1]  # pick reference example
        all_generations = []
        if not context:
            context = ''
        while True:
            clear_torch_cache()
            instruction = input("\nEnter an instruction: ")
            if instruction == "exit":
                break

            eval_vars = copy.deepcopy(example1)
            eval_vars[eval_func_param_names.index('instruction')] = \
                eval_vars[eval_func_param_names.index('instruction_nochat')] = instruction
            eval_vars[eval_func_param_names.index('iinput')] = \
                eval_vars[eval_func_param_names.index('iinput_nochat')] = iinput
            eval_vars[eval_func_param_names.index('context')] = context

            # grab other parameters, like langchain_mode
            for k in eval_func_param_names:
                if k in locals():
                    eval_vars[eval_func_param_names.index(k)] = locals()[k]

            gener = fun(*tuple(eval_vars))
            outr = ''
            res_old = ''
            for gen_output in gener:
                res = gen_output['response']
                extra = gen_output['sources']
                if base_model not in non_hf_types or base_model in ['llama']:
                    if not stream_output:
                        print(res)
                    else:
                        # then stream output for gradio that has full output each generation, so need here to show only new chars
                        diff = res[len(res_old):]
                        print(diff, end='', flush=True)
                        res_old = res
                    outr = res  # don't accumulate
                else:
                    outr += res  # just is one thing
                    if extra:
                        # show sources at end after model itself had streamed to std rest of response
                        print('\n\n' + extra, flush=True)
            all_generations.append(outr + '\n')
            if not cli_loop:
                break
    return all_generations