Spaces:
Paused
Paused
File size: 7,501 Bytes
dbd2ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import copy
import torch
from evaluate_params import eval_func_param_names
from gen import get_score_model, get_model, evaluate, check_locals
from prompter import non_hf_types
from utils import clear_torch_cache, NullContext, get_kwargs
def run_cli( # for local function:
base_model=None, lora_weights=None, inference_server=None,
debug=None,
examples=None, memory_restriction_level=None,
# for get_model:
score_model=None, load_8bit=None, load_4bit=None, low_bit_mode=None, load_half=None,
load_gptq=None, load_exllama=None, use_safetensors=None, revision=None,
use_gpu_id=None, tokenizer_base_model=None,
gpu_id=None, n_jobs=None, local_files_only=None, resume_download=None, use_auth_token=None,
trust_remote_code=None, offload_folder=None, rope_scaling=None, max_seq_len=None, compile_model=None,
llamacpp_dict=None,
# for some evaluate args
stream_output=None, async_output=None, num_async=None,
prompt_type=None, prompt_dict=None, system_prompt=None,
temperature=None, top_p=None, top_k=None, num_beams=None,
max_new_tokens=None, min_new_tokens=None, early_stopping=None, max_time=None, repetition_penalty=None,
num_return_sequences=None, do_sample=None, chat=None,
langchain_mode=None, langchain_action=None, langchain_agents=None,
document_subset=None, document_choice=None,
top_k_docs=None, chunk=None, chunk_size=None,
pre_prompt_query=None, prompt_query=None,
pre_prompt_summary=None, prompt_summary=None,
image_loaders=None,
pdf_loaders=None,
url_loaders=None,
jq_schema=None,
visible_models=None,
h2ogpt_key=None,
add_search_to_context=None,
chat_conversation=None,
text_context_list=None,
docs_ordering_type=None,
min_max_new_tokens=None,
# for evaluate kwargs
captions_model=None,
caption_loader=None,
doctr_loader=None,
pix2struct_loader=None,
image_loaders_options0=None,
pdf_loaders_options0=None,
url_loaders_options0=None,
jq_schema0=None,
keep_sources_in_context=None,
src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None,
model_state0=None,
max_max_new_tokens=None,
is_public=None,
max_max_time=None,
raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None,
my_db_state0=None, selection_docs_state0=None, dbs=None, langchain_modes=None, langchain_mode_paths=None,
detect_user_path_changes_every_query=None,
use_openai_embedding=None, use_openai_model=None,
hf_embedding_model=None, migrate_embedding_model=None, auto_migrate_db=None,
cut_distance=None,
answer_with_sources=None,
append_sources_to_answer=None,
show_accordions=None,
top_k_docs_max_show=None,
show_link_in_sources=None,
add_chat_history_to_context=None,
context=None, iinput=None,
db_type=None, first_para=None, text_limit=None, verbose=None, cli=None,
use_cache=None,
auto_reduce_chunks=None, max_chunks=None, headsize=None,
model_lock=None, force_langchain_evaluate=None,
model_state_none=None,
# unique to this function:
cli_loop=None,
):
# avoid noisy command line outputs
import warnings
warnings.filterwarnings("ignore")
import logging
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
check_locals(**locals())
score_model = "" # FIXME: For now, so user doesn't have to pass
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
device = 'cpu' if n_gpus == 0 else 'cuda'
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
with context_class(device):
from functools import partial
# get score model
smodel, stokenizer, sdevice = get_score_model(reward_type=True,
**get_kwargs(get_score_model, exclude_names=['reward_type'],
**locals()))
model, tokenizer, device = get_model(reward_type=False,
**get_kwargs(get_model, exclude_names=['reward_type'], **locals()))
model_dict = dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights,
inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict,
visible_models=None, h2ogpt_key=None)
model_state = dict(model=model, tokenizer=tokenizer, device=device)
model_state.update(model_dict)
requests_state0 = {}
fun = partial(evaluate, model_state, my_db_state0, selection_docs_state0, requests_state0,
**get_kwargs(evaluate, exclude_names=['model_state',
'my_db_state',
'selection_docs_state',
'requests_state'] + eval_func_param_names,
**locals()))
example1 = examples[-1] # pick reference example
all_generations = []
if not context:
context = ''
while True:
clear_torch_cache()
instruction = input("\nEnter an instruction: ")
if instruction == "exit":
break
eval_vars = copy.deepcopy(example1)
eval_vars[eval_func_param_names.index('instruction')] = \
eval_vars[eval_func_param_names.index('instruction_nochat')] = instruction
eval_vars[eval_func_param_names.index('iinput')] = \
eval_vars[eval_func_param_names.index('iinput_nochat')] = iinput
eval_vars[eval_func_param_names.index('context')] = context
# grab other parameters, like langchain_mode
for k in eval_func_param_names:
if k in locals():
eval_vars[eval_func_param_names.index(k)] = locals()[k]
gener = fun(*tuple(eval_vars))
outr = ''
res_old = ''
for gen_output in gener:
res = gen_output['response']
extra = gen_output['sources']
if base_model not in non_hf_types or base_model in ['llama']:
if not stream_output:
print(res)
else:
# then stream output for gradio that has full output each generation, so need here to show only new chars
diff = res[len(res_old):]
print(diff, end='', flush=True)
res_old = res
outr = res # don't accumulate
else:
outr += res # just is one thing
if extra:
# show sources at end after model itself had streamed to std rest of response
print('\n\n' + extra, flush=True)
all_generations.append(outr + '\n')
if not cli_loop:
break
return all_generations
|