kellyxiaowei commited on
Commit
1bcb7e6
·
1 Parent(s): f1725e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -29
app.py CHANGED
@@ -1,77 +1,79 @@
1
- import torch
2
  import cv2
3
  import gradio as gr
4
  import numpy as np
5
  from transformers import OwlViTProcessor, OwlViTForObjectDetection
 
6
 
7
-
8
- # Use GPU if available
9
  if torch.cuda.is_available():
10
  device = torch.device("cuda")
11
  else:
12
  device = torch.device("cpu")
13
 
 
14
  model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
15
  model.eval()
 
 
16
  processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
17
 
 
 
 
 
 
 
 
18
 
19
- def query_image(img, text_queries, score_threshold):
20
- text_queries = text_queries
21
- text_queries = text_queries.split(",")
22
 
23
  target_sizes = torch.Tensor([img.shape[:2]])
24
- inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
25
 
26
  with torch.no_grad():
27
- outputs = model(**inputs)
28
 
 
29
  outputs.logits = outputs.logits.cpu()
30
- outputs.pred_boxes = outputs.pred_boxes.cpu()
 
 
31
  results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
32
  boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
33
 
34
  font = cv2.FONT_HERSHEY_SIMPLEX
35
 
 
36
  for box, score, label in zip(boxes, scores, labels):
37
  box = [int(i) for i in box.tolist()]
38
 
39
  if score >= score_threshold:
40
  img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
41
- if box[3] + 25 > 768:
42
- y = box[3] - 10
43
- else:
44
- y = box[3] + 25
45
 
46
  img = cv2.putText(
47
  img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
48
  )
49
  return img
50
 
51
-
52
  description = """
53
- Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>,
54
- introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection
55
- with Vision Transformers</a>.
56
- \n\nYou can use OWL-ViT to query images with text descriptions of any object.
57
- To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
58
- can also use the score threshold slider to set a threshold to filter out low probability predictions.
59
-
60
- \n\nOWL-ViT is trained on text templates,
61
- hence you can get better predictions by querying the image with text templates used in training the original model: *"photo of a star-spangled banner"*,
62
- *"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
63
- \n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
64
  """
 
 
65
  demo = gr.Interface(
66
  query_image,
67
- inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
68
  outputs="image",
69
  title="Zero-Shot Object Detection with OWL-ViT",
70
  description=description,
71
  examples=[
72
- ["assets/astronaut.png", "human face, rocket, star-spangled banner, nasa badge", 0.11],
73
- ["assets/coffee.png", "coffee mug, spoon, plate", 0.1],
74
- ["assets/butterflies.jpeg", "orange butterfly", 0.3],
75
  ],
76
  )
77
  demo.launch()
 
1
+ iimport torch
2
  import cv2
3
  import gradio as gr
4
  import numpy as np
5
  from transformers import OwlViTProcessor, OwlViTForObjectDetection
6
+ import requests
7
 
8
+ # 如果GPU可用,就使用GPU,否则使用CPU
 
9
  if torch.cuda.is_available():
10
  device = torch.device("cuda")
11
  else:
12
  device = torch.device("cpu")
13
 
14
+ # 从预训练模型"google/owlvit-large-patch14"加载OWL-ViT模型,并将其放置到适当的设备上
15
  model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
16
  model.eval()
17
+
18
+ # 从同一预训练模型中加载处理器
19
  processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
20
 
21
+ # 定义一个函数来处理图像URL,文本查询和分数阈值
22
+ def query_image(img_url, text_queries, score_threshold):
23
+ # 使用requests库从URL中获取图像
24
+ response = requests.get(img_url)
25
+ response.raise_for_status()
26
+ arr = np.asarray(bytearray(response.content), dtype=np.uint8)
27
+ img = cv2.imdecode(arr, -1) # 使用-1来加载原始图像
28
 
29
+ text_queries = text_queries.split(",") # 将文本查询分割成独立的查询
 
 
30
 
31
  target_sizes = torch.Tensor([img.shape[:2]])
32
+ inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device) # 使用处理器创建模型的输入
33
 
34
  with torch.no_grad():
35
+ outputs = model(**inputs) # 获取模型的输出
36
 
37
+ # 将输出转移到CPU上
38
  outputs.logits = outputs.logits.cpu()
39
+ outputs.pred_boxes = outputs.pred_boxes.cpu()
40
+
41
+ # 使用处理器进行后处理
42
  results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
43
  boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
44
 
45
  font = cv2.FONT_HERSHEY_SIMPLEX
46
 
47
+ # 在图像上绘制边界框并添加标签
48
  for box, score, label in zip(boxes, scores, labels):
49
  box = [int(i) for i in box.tolist()]
50
 
51
  if score >= score_threshold:
52
  img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
53
+ y = box[3] - 10 if box[3] + 25 > 768 else box[3] + 25
 
 
 
54
 
55
  img = cv2.putText(
56
  img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
57
  )
58
  return img
59
 
 
60
  description = """
61
+ Gradio demo for OWL-ViT.
62
+ You can use OWL-ViT to query images with text descriptions of any object.
63
+ To use it, simply provide an image URL and enter comma separated text descriptions of objects you want to query the image for.
64
+ You can also use the score threshold slider to set a threshold to filter out low probability predictions.
 
 
 
 
 
 
 
65
  """
66
+
67
+ # 创建一个Gradio界面
68
  demo = gr.Interface(
69
  query_image,
70
+ inputs=["text", "text", gr.Slider(0, 1, value=0.1)], # 修改输入,使其接受URL而不是图像
71
  outputs="image",
72
  title="Zero-Shot Object Detection with OWL-ViT",
73
  description=description,
74
  examples=[
75
+ ["https://example.com/path/to/image.png", "human face, rocket, star-spangled banner, nasa badge", 0.11],
76
+ ["https://example.com/path/to/another/image.png", "coffee mug, spoon, plate", 0.1],
 
77
  ],
78
  )
79
  demo.launch()