Spaces:
Sleeping
Sleeping
Commit
·
850b42f
1
Parent(s):
1c12a50
update support texts and light gbm model names
Browse files- dashboard/app.py +2 -2
- dashboard/modules/ranking.py +3 -3
- dashboard/modules/support_texts.py +1 -1
dashboard/app.py
CHANGED
@@ -44,8 +44,8 @@ app_ui = ui.page_fluid(
|
|
44 |
ui.markdown("**Ranking**"),
|
45 |
ui.input_select(
|
46 |
"model_select_rank", "Select ranking model:",
|
47 |
-
choices = ["Light
|
48 |
-
selected = "Light
|
49 |
),
|
50 |
ui.input_select(
|
51 |
"rank_cutoff_select", "Select minimum prediction score (%):",
|
|
|
44 |
ui.markdown("**Ranking**"),
|
45 |
ui.input_select(
|
46 |
"model_select_rank", "Select ranking model:",
|
47 |
+
choices = ["Light GBM 1", "Light GBM 2", "Light GBM 3"],
|
48 |
+
selected = "Light GBM 3"
|
49 |
),
|
50 |
ui.input_select(
|
51 |
"rank_cutoff_select", "Select minimum prediction score (%):",
|
dashboard/modules/ranking.py
CHANGED
@@ -154,11 +154,11 @@ def rank_campaign(CAMPAIGN_ID, ranker=lgbm_model_3, rank_cutoff=50):
|
|
154 |
|
155 |
# Rank single lead
|
156 |
def rank_single_lead(CAMPAIGN_ID, LEAD_ID, rank_cutoff=50, ranker=lgbm_model_3):
|
157 |
-
if ranker == "Light
|
158 |
ranker = lgbm_model_1
|
159 |
-
elif ranker == "Light
|
160 |
ranker = lgbm_model_2
|
161 |
-
elif ranker == "Light
|
162 |
ranker = lgbm_model_3
|
163 |
|
164 |
# Selecting single lead data and combine text columns used for ranking
|
|
|
154 |
|
155 |
# Rank single lead
|
156 |
def rank_single_lead(CAMPAIGN_ID, LEAD_ID, rank_cutoff=50, ranker=lgbm_model_3):
|
157 |
+
if ranker == "Light GBM 1":
|
158 |
ranker = lgbm_model_1
|
159 |
+
elif ranker == "Light GBM 2":
|
160 |
ranker = lgbm_model_2
|
161 |
+
elif ranker == "Light GBM 3":
|
162 |
ranker = lgbm_model_3
|
163 |
|
164 |
# Selecting single lead data and combine text columns used for ranking
|
dashboard/modules/support_texts.py
CHANGED
@@ -61,7 +61,7 @@ ranking_intro_3 = '''
|
|
61 |
'''
|
62 |
|
63 |
models_test_ranking_1 = '''
|
64 |
-
The ranking models are based on
|
65 |
parameter is set to 'lambdarank' and the boosting type parameter is set to 'Gradient Boosting Decision Tree'. The combination of these two parameters mean that the models use a lambdaMART algorithm. The models
|
66 |
available in this dashboard are described below. More information about, for example, the specific training parameters can be found in the source code.
|
67 |
<br>
|
|
|
61 |
'''
|
62 |
|
63 |
models_test_ranking_1 = '''
|
64 |
+
The ranking models are based on LightGBM, which is a gradient boosting framework that uses tree based learning algorithms. From this framework, models are created using the LGBMRanker. Here, the objective
|
65 |
parameter is set to 'lambdarank' and the boosting type parameter is set to 'Gradient Boosting Decision Tree'. The combination of these two parameters mean that the models use a lambdaMART algorithm. The models
|
66 |
available in this dashboard are described below. More information about, for example, the specific training parameters can be found in the source code.
|
67 |
<br>
|