Spaces:
Runtime error
Runtime error
File size: 9,602 Bytes
226a7b7 1885732 b45db27 9443c74 b45db27 9443c74 5850fbf 9443c74 b45db27 9443c74 56c8d0a 9443c74 5272b56 9443c74 56c8d0a 9443c74 b45db27 56c8d0a 9443c74 b45db27 9443c74 b45db27 9443c74 b45db27 c9c788f 5272b56 9443c74 5272b56 9443c74 5272b56 9443c74 b45db27 9443c74 b45db27 2efc5d6 9443c74 c9c788f f23fc7b c9c788f 9443c74 b45db27 2c40df6 2cada81 9443c74 87d81cd 9443c74 b45db27 9443c74 b45db27 9443c74 b45db27 9443c74 b45db27 79937ec b45db27 9443c74 b45db27 9443c74 b45db27 9443c74 b45db27 7185cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import spaces
import torch
import json
import logging
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
import gradio as gr
import random
from datetime import datetime
from PIL import Image, PngImagePlugin
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
MAX_SEED = 2**32 - 1
def seed_everything(seed):
if seed is None:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
random.seed(seed)
return torch.Generator(device='cuda').manual_seed(seed)
def save_image(image, metadata, output_dir, is_colab=False):
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"generated_{timestamp}.png"
filepath = os.path.join(output_dir, filename)
# Save with metadata
png_info = PngImagePlugin.PngInfo()
png_info.add_text("parameters", json.dumps(metadata))
image.save(filepath, "PNG", pnginfo=png_info)
return filepath
# Load the diffusion pipeline with optimized VAE
pipe = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/irAsu-1.0",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
# Load optimized VAE
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe.vae = vae
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Style presets
styles = {
"(None)": ("", ""),
"Detailed": ("highly detailed, intricate details, ", ""),
"Simple": ("simple style, minimalistic, ", "complex, detailed"),
"Soft": ("soft lighting, dreamy atmosphere, ", "harsh lighting, sharp contrast"),
}
# Quality presets
quality_presets = {
"Standard": (
"best quality, amazing quality, very aesthetic",
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts"
),
"High Detail": (
"masterpiece, best quality, amazing quality, very aesthetic, highly detailed",
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality"
),
"Basic": (
"good quality",
"nsfw, lowres, bad quality"
)
}
# Function to generate an image
@spaces.GPU
def generate_image(
prompt,
negative_prompt,
use_quality_preset,
resolution,
guidance_scale,
num_inference_steps,
seed,
randomize_seed,
style_preset="(None)",
use_upscaler=False,
upscaler_strength=0.55,
upscale_by=1.5,
progress=gr.Progress()
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Apply style preset
style_prompt, style_negative = styles[style_preset]
prompt = f"{style_prompt}{prompt}"
negative_prompt = f"{negative_prompt}, {style_negative}" if style_negative else negative_prompt
if use_quality_preset:
quality_prompt, quality_negative = quality_presets["Standard"]
prompt = f"{prompt}, {quality_prompt}"
negative_prompt = f"{negative_prompt}, {quality_negative}"
generator = seed_everything(seed)
width, height = map(int, resolution.split('x'))
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"style_preset": style_preset,
"use_quality_preset": use_quality_preset
}
try:
if use_upscaler:
# Initial generation
latents = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent"
).images
# Setup img2img pipeline for upscaling
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
# Calculate new dimensions
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
# Upscale
image = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=latents,
strength=upscaler_strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator
).images[0]
metadata["upscaler"] = {
"strength": upscaler_strength,
"scale_factor": upscale_by,
"final_resolution": f"{new_width}x{new_height}"
}
else:
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=lambda step, timestep, latents: progress(step / num_inference_steps)
).images[0]
# Save image with metadata
image_path = save_image(image, metadata, OUTPUT_DIR)
logger.info(f"Image saved as {image_path} with metadata")
return image, seed, json.dumps(metadata, indent=2)
except Exception as e:
logger.exception(f"An error occurred: {e}")
raise
finally:
if use_upscaler:
del upscaler_pipe
torch.cuda.empty_cache()
# Define Gradio interface
with gr.Blocks(title="irAsu 1.0 Enhanced Demo", theme="NoCrypt/[email protected]") as demo:
gr.HTML("<h1>irAsu 1.0 Enhanced Demo</h1>")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
with gr.Accordion("Style & Quality", open=True):
style_selector = gr.Radio(
choices=list(styles.keys()),
value="(None)",
label="Style Preset"
)
use_quality_preset = gr.Checkbox(label="Use Quality Preset", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=4)
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", value=0)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
use_upscaler_input = gr.Checkbox(label="Use Upscaler", value=False)
with gr.Group(visible=False) as upscaler_settings:
upscaler_strength_input = gr.Slider(minimum=0, maximum=1, step=0.05, label="Upscaler Strength", value=0.55)
upscale_by_input = gr.Slider(minimum=1, maximum=1.5, step=0.1, label="Upscale Factor", value=1.5)
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Parameters", open=False):
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False)
# Handle upscaler visibility
use_upscaler_input.change(
fn=lambda x: gr.Group(visible=x),
inputs=[use_upscaler_input],
outputs=[upscaler_settings]
)
# Generate button click event
generate_button.click(
generate_image,
inputs=[
prompt_input,
negative_prompt_input,
use_quality_preset,
resolution_input,
guidance_scale_input,
num_inference_steps_input,
seed_input,
randomize_seed_input,
style_selector,
use_upscaler_input,
upscaler_strength_input,
upscale_by_input
],
outputs=[output_image, seed_input, metadata_textbox]
)
# Reset button click event
reset_button.click(
lambda: (
"", "", True, "832x1216", 4, 28, 0, True,
"(None)", False, 0.55, 1.5, None
),
outputs=[
prompt_input, negative_prompt_input, use_quality_preset,
resolution_input, guidance_scale_input, num_inference_steps_input,
seed_input, randomize_seed_input, style_selector,
use_upscaler_input, upscaler_strength_input, upscale_by_input,
metadata_textbox
]
)
demo.queue(max_size=20).launch(share=False) |