katielink commited on
Commit
73400f9
·
1 Parent(s): 0e2cac3

Fix example logic

Browse files
Files changed (1) hide show
  1. app.py +12 -7
app.py CHANGED
@@ -84,6 +84,7 @@ post_transforms = Compose(
84
  ]
85
  )
86
 
 
87
  # Define the predict function for the demo
88
  def predict(input_file, z_axis, model=model, device=device):
89
  # Load and process data in MONAI format
@@ -115,6 +116,7 @@ def predict(input_file, z_axis, model=model, device=device):
115
 
116
  return [t1c, t1, t2, flair], [tc, wt, et]
117
 
 
118
  # Use blocks to set up a more complex demo
119
  with gr.Blocks() as demo:
120
 
@@ -128,13 +130,6 @@ with gr.Blocks() as demo:
128
 
129
  # Show the button with custom label
130
  button = gr.Button("Segment Tumor!")
131
-
132
- # Show examples for the user to try
133
- gr.Markdown("Try some examples from MONAI's Decathlon Dataset:")
134
- examples = gr.Examples(
135
- examples=examples,
136
- inputs=[gr.File(), gr.Slider()]
137
- )
138
 
139
  # Show the input image with different MR sequences
140
  input_image = gr.Gallery(label='input MRI sequences (T1+, T1, T2, FLAIR)')
@@ -146,9 +141,19 @@ with gr.Blocks() as demo:
146
  inputs=[input_file, z_axis],
147
  outputs=[input_image, output_segmentation]
148
  )
 
 
 
 
 
 
 
 
 
149
 
150
  # Show references at the bottom of the demo
151
  gr.Markdown(references)
152
 
 
153
  # Launch the demo
154
  demo.launch()
 
84
  ]
85
  )
86
 
87
+
88
  # Define the predict function for the demo
89
  def predict(input_file, z_axis, model=model, device=device):
90
  # Load and process data in MONAI format
 
116
 
117
  return [t1c, t1, t2, flair], [tc, wt, et]
118
 
119
+
120
  # Use blocks to set up a more complex demo
121
  with gr.Blocks() as demo:
122
 
 
130
 
131
  # Show the button with custom label
132
  button = gr.Button("Segment Tumor!")
 
 
 
 
 
 
 
133
 
134
  # Show the input image with different MR sequences
135
  input_image = gr.Gallery(label='input MRI sequences (T1+, T1, T2, FLAIR)')
 
141
  inputs=[input_file, z_axis],
142
  outputs=[input_image, output_segmentation]
143
  )
144
+
145
+ # Have some example for the user to try out
146
+ examples = gr.Examples(
147
+ examples=examples,
148
+ inputs=[input_file, z_axis],
149
+ outputs=[input_image, output_segmentation],
150
+ fn=predict,
151
+ cache_examples=True
152
+ )
153
 
154
  # Show references at the bottom of the demo
155
  gr.Markdown(references)
156
 
157
+
158
  # Launch the demo
159
  demo.launch()