Spaces:
Build error
Build error
Update BraTS space
Browse files- README.md +2 -2
- app.py +83 -3
- examples/BRATS_485.nii.gz +3 -0
- requirements.txt +3 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Glioma Segmentation
|
| 3 |
+
emoji: 🧠
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -1,7 +1,87 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
iface.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from monai import bundle
|
| 5 |
+
from monai.transforms import (
|
| 6 |
+
Compose,
|
| 7 |
+
LoadImaged,
|
| 8 |
+
EnsureChannelFirstd,
|
| 9 |
+
Orientationd,
|
| 10 |
+
NormalizeIntensityd,
|
| 11 |
+
Activationsd,
|
| 12 |
+
AsDiscreted,
|
| 13 |
+
ScaleIntensityd,
|
| 14 |
+
)
|
| 15 |
|
| 16 |
+
BUNDLE_NAME = 'spleen_ct_segmentation_v0.1.0'
|
| 17 |
+
BUNDLE_PATH = os.path.join(torch.hub.get_dir(), 'bundle', BUNDLE_NAME)
|
| 18 |
+
|
| 19 |
+
examples = ['examples/BRATS_485.nii.gz']
|
| 20 |
+
|
| 21 |
+
model, _, _ = bundle.load(
|
| 22 |
+
name = BUNDLE_NAME,
|
| 23 |
+
source = 'hf_hub',
|
| 24 |
+
repo = 'katielink/brats_mri_segmentation_v0.1.0',
|
| 25 |
+
load_ts_module=True,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
|
| 30 |
+
parser = bundle.load_bundle_config(BUNDLE_PATH, 'inference.json')
|
| 31 |
+
|
| 32 |
+
preproc_transforms = Compose(
|
| 33 |
+
[
|
| 34 |
+
LoadImaged(keys=["image"]),
|
| 35 |
+
EnsureChannelFirstd(keys="image"),
|
| 36 |
+
Orientationd(keys=["image"], axcodes="RAS"),
|
| 37 |
+
NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
|
| 38 |
+
]
|
| 39 |
+
)
|
| 40 |
+
inferer = parser.get_parsed_content('inferer', lazy=True, eval_expr=True, instantiate=True)
|
| 41 |
+
post_transforms = Compose(
|
| 42 |
+
[
|
| 43 |
+
Activationsd(keys='pred', sigmoid=True),
|
| 44 |
+
AsDiscreted(keys='pred', threshold=0.5),
|
| 45 |
+
ScaleIntensityd(keys='image', minv=0., maxv=1.)
|
| 46 |
+
]
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def predict(input_file, z_axis, model=model, device=device):
|
| 50 |
+
data = {'image': [input_file.name]}
|
| 51 |
+
data = preproc_transforms(data)
|
| 52 |
+
|
| 53 |
+
model.to(device)
|
| 54 |
+
model.eval()
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
inputs = data['image'].to(device)
|
| 57 |
+
data['pred'] = inferer(inputs=inputs[None,...], network=model)
|
| 58 |
+
data = post_transforms(data)
|
| 59 |
+
|
| 60 |
+
input_image = data['image'].numpy()
|
| 61 |
+
pred_image = data['pred'].cpu().detach().numpy()
|
| 62 |
+
|
| 63 |
+
input_t1_image = input_image[0, :, :, z_axis]
|
| 64 |
+
input_t1c_image = input_image[1, :, :, z_axis]
|
| 65 |
+
input_t2_image = input_image[2, :, :, z_axis]
|
| 66 |
+
input_flair_image = input_image[3, :, :, z_axis]
|
| 67 |
+
|
| 68 |
+
pred_1_image = pred_image[0, 0, :, :, z_axis]
|
| 69 |
+
pred_2_image = pred_image[0, 1, :, :, z_axis]
|
| 70 |
+
pred_3_image = pred_image[0, 2, :, :, z_axis]
|
| 71 |
+
|
| 72 |
+
return input_t1c_image, pred_1_image
|
| 73 |
+
|
| 74 |
+
iface = gr.Interface(
|
| 75 |
+
fn=predict,
|
| 76 |
+
inputs=[
|
| 77 |
+
gr.File(label='Nifti file'),
|
| 78 |
+
gr.Slider(0, 200, label='z-axis', value=100)
|
| 79 |
+
],
|
| 80 |
+
outputs=[
|
| 81 |
+
gr.Image(label='input image'),
|
| 82 |
+
gr.Image(label='segmentation')],
|
| 83 |
+
title='Segment Gliomas using MONAI',
|
| 84 |
+
examples=examples,
|
| 85 |
+
)
|
| 86 |
|
|
|
|
| 87 |
iface.launch()
|
examples/BRATS_485.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1de6be1eeb49c788baa286a21d71546b2974bc300d5bc6ce4541e41854a0fefb
|
| 3 |
+
size 8327084
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/katielink/MONAI.git@4042-download-hf-hub-bundle
|
| 2 |
+
huggingface_hub
|
| 3 |
+
nibabel
|