kasun commited on
Commit
7ab6979
·
1 Parent(s): 344d16a

added 4 more models

Browse files
Files changed (1) hide show
  1. app.py +22 -16
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from transformers import AutoProcessor, BlipForConditionalGeneration, AutoModelForCausalLM
3
 
4
  # from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
5
  import torch
@@ -14,17 +14,17 @@ torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/as
14
  git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
15
  git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
16
 
17
- # git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
18
- # git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
19
 
20
- # git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
21
- # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
22
 
23
  blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
24
  blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
25
 
26
- # blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
27
- # blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
28
 
29
  # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
30
  # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
@@ -32,9 +32,9 @@ blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-
32
  # blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
33
  # blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
34
 
35
- # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
36
- # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
37
- # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
 
39
  # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
40
  # model_name="coca_ViT-L-14",
@@ -78,15 +78,15 @@ def generate_caption_coca(model, transform, image):
78
  def generate_captions(image):
79
  caption_git_base = generate_caption(git_processor_base, git_model_base, image)
80
 
81
- # caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
82
 
83
- # caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
84
 
85
  caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
86
 
87
- # caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
88
 
89
- # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
90
 
91
  # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
92
 
@@ -95,13 +95,19 @@ def generate_captions(image):
95
  # caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
96
 
97
  # return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
98
- return caption_git_base, caption_blip_base
99
 
100
 
101
 
102
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
103
  # outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
104
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by BLIP-base")]
 
 
 
 
 
 
105
 
106
  title = "Interactive demo: comparing image captioning models"
107
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, BlipForConditionalGeneration, AutoModelForCausalLM, AutoImageProcessor, VisionEncoderDecoderModel, AutoTokenizer
3
 
4
  # from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
5
  import torch
 
14
  git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
15
  git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
16
 
17
+ git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
18
+ git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
19
 
20
+ git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
21
+ git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
22
 
23
  blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
24
  blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
25
 
26
+ blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
27
+ blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
28
 
29
  # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
30
  # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
 
32
  # blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
33
  # blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
34
 
35
+ vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
36
+ vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
37
+ vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
 
39
  # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
40
  # model_name="coca_ViT-L-14",
 
78
  def generate_captions(image):
79
  caption_git_base = generate_caption(git_processor_base, git_model_base, image)
80
 
81
+ caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
82
 
83
+ caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
84
 
85
  caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
86
 
87
+ caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
88
 
89
+ caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
90
 
91
  # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
92
 
 
95
  # caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
96
 
97
  # return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
98
+ return caption_git_base, caption_git_large_coco, caption_git_large_textcaps, caption_blip_base, caption_blip_large, caption_vitgpt
99
 
100
 
101
 
102
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
103
  # outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
104
+ outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base fine-tuned on COCO"),
105
+ gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"),
106
+ gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"),
107
+ gr.outputs.Textbox(label="Caption generated by BLIP-base"),
108
+ gr.outputs.Textbox(label="Caption generated by BLIP-large"),
109
+ gr.outputs.Textbox(label="Caption generated by vitgpt")
110
+ ]
111
 
112
  title = "Interactive demo: comparing image captioning models"
113
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."