update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
gr.load("models/Salesforce/codet5p-220m").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
gr.load("models/Salesforce/codet5p-220m").launch()
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
import torch
|
7 |
+
|
8 |
+
def main():
|
9 |
+
st.title("Python Code Generation App")
|
10 |
+
|
11 |
+
# Load the model and tokenizer
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("models/Salesforce/codet5p-220m")
|
13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("models/Salesforce/codet5p-220m").to(device)
|
15 |
+
|
16 |
+
# Get user input
|
17 |
+
st.subheader("Instructions")
|
18 |
+
st.write("Use the following format to enter prompts: Write python code for SBERT vector embedding of a sentence")
|
19 |
+
st.write("")
|
20 |
+
query = st.text_input("Enter a prompt here: ")
|
21 |
+
if st.button("Generate Code"):
|
22 |
+
if query.strip().lower() == 'exit':
|
23 |
+
st.stop()
|
24 |
+
else:
|
25 |
+
# Generate summary
|
26 |
+
inputs = tokenizer(f"summarize:{query}", return_tensors="pt")
|
27 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
28 |
+
output = model.generate(**inputs, max_length=750)
|
29 |
+
generated_text = tokenizer.decode(output[0]).replace("summarize:", "")
|
30 |
+
|
31 |
+
# Display the generated summary
|
32 |
+
st.subheader("Generated Code:")
|
33 |
+
st.code(generated_text)
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
main()
|