Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,225 +1,227 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
|
4 |
-
from pydub import AudioSegment
|
5 |
-
from sentence_transformers import SentenceTransformer, util
|
6 |
-
import spacy
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
"
|
48 |
-
"
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
return
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
json_data[section]
|
93 |
-
|
94 |
-
|
95 |
-
return
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
return
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
for
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
f"
|
158 |
-
f"
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
gr.Textbox(label="
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
gr.Textbox(label="
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
|
4 |
+
from pydub import AudioSegment
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
import spacy
|
7 |
+
import spacy.cli
|
8 |
+
spacy.cli.download("en_core_web_sm")
|
9 |
+
import json
|
10 |
+
from faster_whisper import WhisperModel
|
11 |
+
|
12 |
+
# Audio conversion from MP4 to MP3
|
13 |
+
def convert_mp4_to_mp3(mp4_path, mp3_path):
|
14 |
+
try:
|
15 |
+
audio = AudioSegment.from_file(mp4_path, format="mp4")
|
16 |
+
audio.export(mp3_path, format="mp3")
|
17 |
+
except Exception as e:
|
18 |
+
raise RuntimeError(f"Error converting MP4 to MP3: {e}")
|
19 |
+
|
20 |
+
|
21 |
+
# Check if CUDA is available for GPU acceleration
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
device = "cuda"
|
24 |
+
compute_type = "float16"
|
25 |
+
else:
|
26 |
+
device = "cpu"
|
27 |
+
compute_type = "int8"
|
28 |
+
|
29 |
+
|
30 |
+
# Load Faster Whisper Model for transcription
|
31 |
+
def load_faster_whisper():
|
32 |
+
model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2", device=device, compute_type=compute_type)
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
# Load NLP model and other helpers
|
37 |
+
nlp = spacy.load("en_core_web_sm")
|
38 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("Mahalingam/DistilBart-Med-Summary")
|
41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Mahalingam/DistilBart-Med-Summary")
|
42 |
+
|
43 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
44 |
+
|
45 |
+
|
46 |
+
soap_prompts = {
|
47 |
+
"subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
|
48 |
+
"objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
|
49 |
+
"assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
|
50 |
+
"plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
|
51 |
+
}
|
52 |
+
soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
|
53 |
+
|
54 |
+
|
55 |
+
# Load Mistral model and tokenizer
|
56 |
+
def load_mistral_model():
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
58 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
59 |
+
model.to(device)
|
60 |
+
return model, tokenizer
|
61 |
+
|
62 |
+
|
63 |
+
# Initialize Mistral
|
64 |
+
mistral_model, mistral_tokenizer = load_mistral_model()
|
65 |
+
|
66 |
+
# Query function for Mistral
|
67 |
+
def mistral_query(user_prompt, soap_note):
|
68 |
+
combined_prompt = f"User Instructions:\n{user_prompt}\n\nContext:\n{soap_note}"
|
69 |
+
try:
|
70 |
+
inputs = mistral_tokenizer(combined_prompt, return_tensors="pt", truncation=True, max_length=4096).to(device)
|
71 |
+
outputs = mistral_model.generate(
|
72 |
+
inputs["input_ids"],
|
73 |
+
max_length=512,
|
74 |
+
temperature=0.7,
|
75 |
+
num_beams=4,
|
76 |
+
no_repeat_ngram_size=3
|
77 |
+
)
|
78 |
+
return mistral_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
+
except Exception as e:
|
80 |
+
return f"Error generating response: {e}"
|
81 |
+
|
82 |
+
|
83 |
+
# Convert the response to JSON format
|
84 |
+
def convert_to_json(template):
|
85 |
+
try:
|
86 |
+
lines = template.split("\n")
|
87 |
+
json_data = {}
|
88 |
+
section = None
|
89 |
+
for line in lines:
|
90 |
+
if line.endswith(":"):
|
91 |
+
section = line[:-1]
|
92 |
+
json_data[section] = []
|
93 |
+
elif section:
|
94 |
+
json_data[section].append(line.strip())
|
95 |
+
return json.dumps(json_data, indent=2)
|
96 |
+
except Exception as e:
|
97 |
+
return f"Error converting to JSON: {e}"
|
98 |
+
|
99 |
+
|
100 |
+
# Transcription using Faster Whisper
|
101 |
+
def transcribe_audio(mp4_path):
|
102 |
+
try:
|
103 |
+
print(f"Processing MP4 file: {mp4_path}")
|
104 |
+
model = load_faster_whisper()
|
105 |
+
mp3_path = "output_audio.mp3"
|
106 |
+
convert_mp4_to_mp3(mp4_path, mp3_path)
|
107 |
+
|
108 |
+
# Transcribe using Faster Whisper
|
109 |
+
result, segments = model.transcribe(mp3_path, beam_size=5)
|
110 |
+
transcription = " ".join([seg.text for seg in segments])
|
111 |
+
return transcription
|
112 |
+
except Exception as e:
|
113 |
+
return f"Error during transcription: {e}"
|
114 |
+
|
115 |
+
|
116 |
+
# Classify the sentence to the correct SOAP section
|
117 |
+
def classify_sentence(sentence):
|
118 |
+
similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
|
119 |
+
return max(similarities, key=similarities.get)
|
120 |
+
|
121 |
+
|
122 |
+
# Summarize the section if it's too long
|
123 |
+
def summarize_section(section_text):
|
124 |
+
if len(section_text.split()) < 50:
|
125 |
+
return section_text
|
126 |
+
target_length = int(len(section_text.split()) * 0.65)
|
127 |
+
inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
|
128 |
+
summary_ids = model.generate(
|
129 |
+
inputs,
|
130 |
+
max_length=target_length,
|
131 |
+
min_length=int(target_length * 0.60),
|
132 |
+
length_penalty=1.0,
|
133 |
+
num_beams=4
|
134 |
+
)
|
135 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
136 |
+
|
137 |
+
|
138 |
+
# Analyze the SOAP content and divide into sections
|
139 |
+
def soap_analysis(text):
|
140 |
+
doc = nlp(text)
|
141 |
+
soap_note = {section: "" for section in soap_prompts.keys()}
|
142 |
+
|
143 |
+
for sentence in doc.sents:
|
144 |
+
section = classify_sentence(sentence.text)
|
145 |
+
soap_note[section] += sentence.text + " "
|
146 |
+
|
147 |
+
# Summarize each section of the SOAP note
|
148 |
+
for section in soap_note:
|
149 |
+
soap_note[section] = summarize_section(soap_note[section].strip())
|
150 |
+
|
151 |
+
return format_soap_output(soap_note)
|
152 |
+
|
153 |
+
|
154 |
+
# Format the SOAP note output
|
155 |
+
def format_soap_output(soap_note):
|
156 |
+
return (
|
157 |
+
f"Subjective:\n{soap_note['subjective']}\n\n"
|
158 |
+
f"Objective:\n{soap_note['objective']}\n\n"
|
159 |
+
f"Assessment:\n{soap_note['assessment']}\n\n"
|
160 |
+
f"Plan:\n{soap_note['plan']}\n"
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
# Process file function for audio to SOAP
|
165 |
+
def process_file(mp4_file, user_prompt):
|
166 |
+
transcription = transcribe_audio(mp4_file.name)
|
167 |
+
print("Transcribed Text: ", transcription)
|
168 |
+
|
169 |
+
soap_note = soap_analysis(transcription)
|
170 |
+
print("SOAP Notes: ", soap_note)
|
171 |
+
|
172 |
+
template_output = mistral_query(user_prompt, soap_note)
|
173 |
+
print("Template: ", template_output)
|
174 |
+
|
175 |
+
json_output = convert_to_json(template_output)
|
176 |
+
|
177 |
+
return soap_note, template_output, json_output
|
178 |
+
|
179 |
+
|
180 |
+
# Process text function for text input to SOAP
|
181 |
+
def process_text(text, user_prompt):
|
182 |
+
soap_note = soap_analysis(text)
|
183 |
+
print(soap_note)
|
184 |
+
|
185 |
+
template_output = mistral_query(user_prompt, soap_note)
|
186 |
+
print(template_output)
|
187 |
+
json_output = convert_to_json(template_output)
|
188 |
+
|
189 |
+
return soap_note, template_output, json_output
|
190 |
+
|
191 |
+
|
192 |
+
# Launch the Gradio interface
|
193 |
+
def launch_gradio():
|
194 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
195 |
+
gr.Markdown("# SOAP Note Generator")
|
196 |
+
with gr.Tab("Audio to SOAP"):
|
197 |
+
gr.Interface(
|
198 |
+
fn=process_file,
|
199 |
+
inputs=[
|
200 |
+
gr.File(label="Upload MP4 File"),
|
201 |
+
gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6),
|
202 |
+
],
|
203 |
+
outputs=[
|
204 |
+
gr.Textbox(label="SOAP Note"),
|
205 |
+
gr.Textbox(label="Generated Template from Mistral"),
|
206 |
+
gr.Textbox(label="JSON Output"),
|
207 |
+
],
|
208 |
+
)
|
209 |
+
with gr.Tab("Text to SOAP"):
|
210 |
+
gr.Interface(
|
211 |
+
fn=process_text,
|
212 |
+
inputs=[
|
213 |
+
gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6),
|
214 |
+
gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6),
|
215 |
+
],
|
216 |
+
outputs=[
|
217 |
+
gr.Textbox(label="SOAP Note"),
|
218 |
+
gr.Textbox(label="Generated Template from Mistral"),
|
219 |
+
gr.Textbox(label="JSON Output"),
|
220 |
+
],
|
221 |
+
)
|
222 |
+
demo.launch(share=True, debug=True)
|
223 |
+
|
224 |
+
|
225 |
+
# Run the Gradio app
|
226 |
+
if __name__ == "__main__":
|
227 |
+
launch_gradio()
|