kantundpeterpan commited on
Commit
cd94a38
·
1 Parent(s): 168eed2
Files changed (2) hide show
  1. app.py +5 -0
  2. tasks/text.py +7 -24
app.py CHANGED
@@ -2,6 +2,11 @@ from fastapi import FastAPI
2
  from dotenv import load_dotenv
3
  from tasks import text, image, audio
4
 
 
 
 
 
 
5
  # Load environment variables
6
  load_dotenv()
7
 
 
2
  from dotenv import load_dotenv
3
  from tasks import text, image, audio
4
 
5
+ from skops.hub_utils import download
6
+
7
+ #download model for text task
8
+ download(repo_id = "kantundpeterpan/frugal-ai-toy", dst = "text/model")
9
+
10
  # Load environment variables
11
  load_dotenv()
12
 
tasks/text.py CHANGED
@@ -15,25 +15,10 @@ import joblib
15
  REPO_ID = "kantundpeterpan/frugal-ai-toy"
16
  FILENAME = "tfidf_rf.skops"
17
 
18
- # import nltk
19
- # from nltk.tokenize import WordPunctTokenizer
20
- # from nltk.stem import WordNetLemmatizer
21
- # from nltk.corpus import stopwords
22
- # import string
23
- # nltk.download('stopwords')
24
-
25
- # stop = set(stopwords.words('english') + list(string.punctuation))
26
-
27
- # def tokenize_quote(r):
28
- # tokens = nltk.word_tokenize(r.lower())
29
- # cleaned = [word for word in tokens if word not in stop]
30
- # return cleaned
31
-
32
- # def lemmatize_tokens(tokens: list):
33
- # return [lemmatizer.lemmatize(t) for t in tokens]
34
-
35
- # def lemmatize_X(X):
36
- # return X.quote.apply(tokenize_quote).apply(lemmatize_tokens).apply(lambda x: " ".join(x))
37
 
38
  import random
39
 
@@ -80,6 +65,7 @@ async def evaluate_text(request: TextEvaluationRequest):
80
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
81
  test_dataset = train_test["test"]
82
  test_df = pd.DataFrame(test_dataset)
 
83
 
84
  # Start tracking emissions
85
  tracker.start()
@@ -90,14 +76,11 @@ async def evaluate_text(request: TextEvaluationRequest):
90
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
91
  #--------------------------------------------------------------------------------------------
92
 
93
-
94
- #download model
95
- download(repo_id = "kantundpeterpan/frugal-ai-toy", dst = "skops_test")
96
  #get unknwown types
97
- unknown = skops.io.get_untrusted_types(file = "skops_test/tfidf_rf.skops")
98
 
99
  #load model
100
- model = model = load("skops_test/tfidf_rf.skops", trusted = unknown)
101
 
102
  # Make predictions
103
  true_labels = test_dataset["label"]
 
15
  REPO_ID = "kantundpeterpan/frugal-ai-toy"
16
  FILENAME = "tfidf_rf.skops"
17
 
18
+ #add model directory to python path to be able to load tools.py
19
+ import sys
20
+ import os
21
+ sys.path.append(os.path.abspath('model'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  import random
24
 
 
65
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
66
  test_dataset = train_test["test"]
67
  test_df = pd.DataFrame(test_dataset)
68
+ print(test_df.head())
69
 
70
  # Start tracking emissions
71
  tracker.start()
 
76
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
77
  #--------------------------------------------------------------------------------------------
78
 
 
 
 
79
  #get unknwown types
80
+ unknown = skops.io.get_untrusted_types(file = "model/tfidf_rf.skops")
81
 
82
  #load model
83
+ model = model = load("model/tfidf_rf.skops", trusted = unknown)
84
 
85
  # Make predictions
86
  true_labels = test_dataset["label"]