kantundpeterpan's picture
ready1234
7d87067
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import skops
from skops.hub_utils import download
from skops.io import load
import pandas as pd
from huggingface_hub import hf_hub_download
import joblib
REPO_ID = "kantundpeterpan/frugal-ai-toy"
MODEL = "tfidf_rf.skops"
import os
if not os.path.exists("tasks/model"):
#download model for text task
download(repo_id = REPO_ID, dst = "tasks/model")
import sys
#add model directory to python path to be able to load tools.py
sys.path.append(os.path.abspath('tasks/model'))
# print("### App Dir")
# print(os.listdir("./"))
# print()
# print("### Task Dir")
# print(os.listdir("./tasks"))
# print("### Model Dir")
# print(os.listdir("./tasks/model"))
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "tfidf-rf"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
test_df = pd.DataFrame(test_dataset)
# print(test_df.head())
#get unknwown types
unknown = skops.io.get_untrusted_types(file = "tasks/model/" + MODEL)
#load model
model = model = load("tasks/model/" + MODEL, trusted = unknown)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within
# the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make predictions
true_labels = test_dataset["label"]
predictions = [
LABEL_MAPPING[r] for r in model.predict(test_df)
]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results