Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
from transformers import pipeline, AutoTokenizer, T5ForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
model_name = "IlyaGusev/rut5_base_sum_gazeta"
|
@@ -23,21 +30,16 @@ def summ_mT5_G(text):
|
|
23 |
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
|
24 |
return summary
|
25 |
|
26 |
-
import torch
|
27 |
-
|
28 |
|
29 |
# punctuation
|
30 |
model_punc, example_texts, languages, punct, apply_te = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_te')
|
31 |
|
|
|
32 |
def punct(text):
|
33 |
# print(text)
|
34 |
return apply_te(text.lower(), lan='ru')
|
35 |
|
36 |
|
37 |
-
from pyannote.audio import Pipeline
|
38 |
-
import os
|
39 |
-
|
40 |
-
|
41 |
pipeline_a = Pipeline.from_pretrained(
|
42 |
"pyannote/speaker-diarization-3.1",
|
43 |
use_auth_token=str(os.getenv("s1")))
|
@@ -71,15 +73,11 @@ def speackers_list(audio_f : str):
|
|
71 |
|
72 |
# speackers = speackers_list(name_of_file)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
from faster_whisper import WhisperModel
|
77 |
-
|
78 |
-
|
79 |
model_size = "large-v3"
|
80 |
# Run on GPU with FP16
|
81 |
model_tts = WhisperModel(model_size) #, lan = "ru") #, device="cpu", compute_type="int8") #, device="cuda", compute_type="float16")
|
82 |
|
|
|
83 |
def speach_to_text(file_name):
|
84 |
|
85 |
segments, info = model_tts.transcribe(file_name, beam_size=5)
|
@@ -124,7 +122,7 @@ class Segment_text:
|
|
124 |
def get_speacker(self):
|
125 |
return self.speacker
|
126 |
|
127 |
-
|
128 |
def init_segments(speackers, name_of_file):
|
129 |
list_of_segments = []
|
130 |
audio = AudioSegment.from_file(name_of_file)
|
@@ -147,15 +145,12 @@ def get_text_to_out(list_of_segments : list):
|
|
147 |
res_sum += seg.get_speacker() + ": " + seg.get_summarization() + "\n"
|
148 |
return res_text, res_sum
|
149 |
|
150 |
-
from random import randint
|
151 |
-
|
152 |
|
153 |
def do_smth(file):
|
154 |
audio = AudioSegment.from_wav(file)
|
155 |
name_of_file = "f"+str(randint(1,10**8))
|
156 |
audio.export(name_of_file, format="mp3")
|
157 |
|
158 |
-
|
159 |
speackers = speackers_list(name_of_file)
|
160 |
|
161 |
list_of_segments = init_segments(speackers, name_of_file)
|
@@ -164,8 +159,6 @@ def do_smth(file):
|
|
164 |
|
165 |
return out_text, out_sum
|
166 |
|
167 |
-
import gradio as gr
|
168 |
-
|
169 |
|
170 |
demo = gr.Interface(
|
171 |
do_smth,
|
|
|
1 |
from transformers import pipeline, AutoTokenizer, T5ForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
from pyannote.audio import Pipeline
|
4 |
+
import os
|
5 |
+
from faster_whisper import WhisperModel
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from random import randint
|
8 |
+
import gradio as gr
|
9 |
|
10 |
|
11 |
model_name = "IlyaGusev/rut5_base_sum_gazeta"
|
|
|
30 |
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
|
31 |
return summary
|
32 |
|
|
|
|
|
33 |
|
34 |
# punctuation
|
35 |
model_punc, example_texts, languages, punct, apply_te = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_te')
|
36 |
|
37 |
+
|
38 |
def punct(text):
|
39 |
# print(text)
|
40 |
return apply_te(text.lower(), lan='ru')
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
43 |
pipeline_a = Pipeline.from_pretrained(
|
44 |
"pyannote/speaker-diarization-3.1",
|
45 |
use_auth_token=str(os.getenv("s1")))
|
|
|
73 |
|
74 |
# speackers = speackers_list(name_of_file)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
76 |
model_size = "large-v3"
|
77 |
# Run on GPU with FP16
|
78 |
model_tts = WhisperModel(model_size) #, lan = "ru") #, device="cpu", compute_type="int8") #, device="cuda", compute_type="float16")
|
79 |
|
80 |
+
|
81 |
def speach_to_text(file_name):
|
82 |
|
83 |
segments, info = model_tts.transcribe(file_name, beam_size=5)
|
|
|
122 |
def get_speacker(self):
|
123 |
return self.speacker
|
124 |
|
125 |
+
|
126 |
def init_segments(speackers, name_of_file):
|
127 |
list_of_segments = []
|
128 |
audio = AudioSegment.from_file(name_of_file)
|
|
|
145 |
res_sum += seg.get_speacker() + ": " + seg.get_summarization() + "\n"
|
146 |
return res_text, res_sum
|
147 |
|
|
|
|
|
148 |
|
149 |
def do_smth(file):
|
150 |
audio = AudioSegment.from_wav(file)
|
151 |
name_of_file = "f"+str(randint(1,10**8))
|
152 |
audio.export(name_of_file, format="mp3")
|
153 |
|
|
|
154 |
speackers = speackers_list(name_of_file)
|
155 |
|
156 |
list_of_segments = init_segments(speackers, name_of_file)
|
|
|
159 |
|
160 |
return out_text, out_sum
|
161 |
|
|
|
|
|
162 |
|
163 |
demo = gr.Interface(
|
164 |
do_smth,
|