from huggingface_hub import InferenceClient import gradio as gr import streamlit as st import requests client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def search_url(search_query): API_KEY = st.secrets['AIzaSyDseKKQCAUBmPidu_QapnpJCGLueDWYJbE'] SEARCH_ENGINE_ID = st.secrets['001ae9bf840514e61'] url = 'https://customsearch.googleapis.com/customsearch/v1' params = { 'q': search_query, 'key': API_KEY, 'cx': SEARCH_ENGINE_ID, } response = requests.get(url, params=params) results = response.json() # print(results) if 'items' in results: for i in range(min(5, len(results['items']))): print(f"Link {i + 1}: {results['items'][i]['link']}") return results['items'][:5] else: print("No search results found.") return None def tokenize(text): return text # return tok.encode(text, add_special_tokens=False) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += "" + tokenize("[INST]") + tokenize(user_prompt) + tokenize("[/INST]") prompt += tokenize(bot_response) + " " prompt += tokenize("[INST]") + tokenize(message) + tokenize("[/INST]") return prompt def generate(prompt, history, system_prompt, temperature=0.2, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output def generateS(prompt, history, system_prompt, temperature=0.2, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): stream = search_url(prompt) # output = "" # for response in stream: # output += response.token.text # yield output return stream additional_inputs=[ gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.2, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=512, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] mychatbot = gr.Chatbot( avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=False) demo = gr.ChatInterface(fn=generateS, chatbot=mychatbot, additional_inputs=additional_inputs, title="Kamran's Mixtral 8x7b Chat", retry_btn=None, undo_btn=None ) demo.queue().launch(show_api=False)