|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from huggingface_hub import InferenceClient |
|
import uvicorn |
|
|
|
|
|
|
|
|
|
|
|
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate(item: Item): |
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
terminators = [ |
|
pipeline.tokenizer.eos_token_id, |
|
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = pipeline( |
|
messages, |
|
max_new_tokens=item.max_new_tokens, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=item.temperature, |
|
top_p=item.top_p, |
|
) |
|
return outputs[0]["generated_text"][-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
client = InferenceClient(model_id) |
|
|
|
class Item(BaseModel): |
|
prompt: str |
|
history: list |
|
system_prompt: str |
|
temperature: float = 0.6 |
|
max_new_tokens: int = 1024 |
|
top_p: float = 0.95 |
|
seed : int = 42 |
|
|
|
app = FastAPI() |
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def generate(item: Item): |
|
temperature = float(item.temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(item.top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=item.max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=item.repetition_penalty, |
|
do_sample=True, |
|
seed=item.seed, |
|
) |
|
|
|
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
return output |
|
|
|
@app.post("/generate/") |
|
async def generate_text(item: Item): |
|
ans = generate(item) |
|
return {"response": ans} |