|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
import requests |
|
import json |
|
|
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
|
|
def google_search(query, **kwargs): |
|
api_key = 'AIzaSyDseKKQCAUBmPidu_QapnpJCGLueDWYJbE' |
|
cse_id = '001ae9bf840514e61' |
|
|
|
service_url = 'https://www.googleapis.com/customsearch/v1' |
|
params = { |
|
'key': api_key, |
|
'cx': cse_id, |
|
'q': query, |
|
**kwargs |
|
} |
|
response = requests.get(service_url, params=params) |
|
if response.status_code == 200: |
|
return json.loads(response.text)['items'] |
|
else: |
|
print(f'Error: {response.status_code}') |
|
return [] |
|
|
|
def tokenize(text): |
|
return text |
|
|
|
|
|
def format_prompt(message, history): |
|
prompt = "" |
|
for user_prompt, bot_response in history: |
|
prompt += "<s>" + tokenize("[INST]") + tokenize(user_prompt) + tokenize("[/INST]") |
|
prompt += tokenize(bot_response) + "</s> " |
|
prompt += tokenize("[INST]") + tokenize(message) + tokenize("[/INST]") |
|
return prompt |
|
|
|
def generate(prompt, history, system_prompt, temperature=0.2, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) |
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
print(response.token.text + "/n") |
|
output += response.token.text |
|
yield output |
|
return output |
|
|
|
def generateS(prompt, history, system_prompt, temperature=0.2, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): |
|
|
|
stream = google_search(prompt) |
|
output = "" |
|
|
|
for response in stream: |
|
output += json.dumps(response) |
|
yield output |
|
return output |
|
|
|
additional_inputs=[ |
|
gr.Textbox( |
|
label="System Prompt", |
|
max_lines=1, |
|
interactive=True, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.2, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=512, |
|
minimum=0, |
|
maximum=1048, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.95, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
mychatbot = gr.Chatbot( |
|
avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=False) |
|
|
|
demo = gr.ChatInterface(fn=generate, |
|
chatbot=mychatbot, |
|
additional_inputs=additional_inputs, |
|
title="Kamran's Mixtral 8x7b Chat", |
|
retry_btn=None, |
|
undo_btn=None |
|
) |
|
|
|
demo.queue().launch(show_api=False) |
|
|