File size: 4,432 Bytes
738953f
 
 
55b11ff
738953f
55b11ff
 
 
6419c7c
738953f
6419c7c
55b11ff
6419c7c
 
 
55b11ff
6419c7c
 
 
 
 
 
 
 
738953f
e15a09f
738953f
 
 
 
 
 
 
 
 
 
 
 
 
 
1091ed2
 
55b11ff
738953f
 
 
 
 
 
 
 
a114927
 
 
 
 
 
 
 
 
55b11ff
a114927
 
 
 
 
 
 
 
55b11ff
a114927
 
 
 
 
 
 
 
55b11ff
a114927
 
 
 
 
 
 
 
55b11ff
a114927
 
 
 
 
 
 
 
edcd873
 
55b11ff
edcd873
 
 
 
 
 
 
a000d3e
edcd873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from huggingface_hub import InferenceClient
import gradio as gr

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def tokenize(text):
    return text
    # return tok.encode(text, add_special_tokens=False)

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt
    
# def format_prompt(message, history):
#     prompt = ""
#     for user_prompt, bot_response in history:
#         prompt += "<s>" + tokenize("[INST]") + tokenize(user_prompt) + tokenize("[/INST]")
#         prompt += tokenize(bot_response) + "</s> "
#     prompt += tokenize("[INST]") + tokenize(message) + tokenize("[/INST]")
#     return prompt

def generate(prompt, history, system_prompt, temperature=0.2, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    # formatted_prompt = format_prompt(prompt, history)
    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.2,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=512,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.95,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

# mychatbot = gr.Chatbot(
#     avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)

# demo = gr.ChatInterface(fn=generate, 
#                         chatbot=mychatbot,
#                         additional_inputs=additional_inputs,
#                         title="Kamran's Mixtral 8x7b Chat",
#                         retry_btn=None,
#                         undo_btn=None
#                        )

# demo.queue().launch(show_api=False)

examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
          ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
          ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
          ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
          ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
          ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
         ]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="Mixtral 46.7B",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)